Skip to main content
Log in

Study of N(1520) and N(1535) structures via \(\gamma ^*p\rightarrow N^*\) transitions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The helicity amplitudes of the N(1520) and N(1535) resonances in the \(\gamma ^*p\rightarrow N^*\) electromagnetic transition are studied in the constituent quark model using the impulse approximation, with the proton and resonances assumed to be in three-quark configurations. The comparison of theoretical results and experimental data on the helicity amplitudes \(A_{1/2}\), \(A_{3/2}\), and \(S_{1/2}\) indicates that the N(1520) and N(1535) resonances are primarily composed of three-quark \(L=1\) states but may contain additional components. However, it is improbable that contributions from meson clouds will be dominant at low \(Q^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: The experimental data used in the article are published and presented in the cited literature.]

References

  1. R. Thompson et al., Phys. Rev. Lett. 86, 1702 (2001). https://doi.org/10.1103/PhysRevLett.86.1702

    Article  ADS  Google Scholar 

  2. H. Denizli et al., Phys. Rev. C 76, 015204 (2007). https://doi.org/10.1103/PhysRevC.76.015204

    Article  ADS  Google Scholar 

  3. M.M. Dalton et al., Phys. Rev. C 80, 015205 (2009). https://doi.org/10.1103/PhysRevC.80.015205

    Article  ADS  Google Scholar 

  4. I.G. Aznauryan et al., Phys. Rev. C 71, 015201 (2005). https://doi.org/10.1103/PhysRevC.71.015201

    Article  ADS  Google Scholar 

  5. I.G. Aznauryan, V.D. Burkert, W. Kim, K. Park, G. Adams, M.J. Amaryan, P. Ambrozewicz, M. Anghinolfi, G. Asryan, H. Avakian, H. Bagdasaryan, N. Baillie, J.P. Ball, N.A. Baltzell, S. Barrow et al., Phys. Rev. C 78, 045209 (2008). https://doi.org/10.1103/PhysRevC.78.045209

    Article  ADS  Google Scholar 

  6. I.G. Aznauryan et al., Phys. Rev. C 80, 055203 (2009). https://doi.org/10.1103/PhysRevC.80.055203

    Article  ADS  Google Scholar 

  7. I.G. Aznauryan, Phys. Rev. C 68, 065204 (2003). https://doi.org/10.1103/PhysRevC.68.065204

    Article  ADS  Google Scholar 

  8. V.I. Mokeev, V.D. Burkert, L. Elouadrhiri, G.V. Fedotov, E.N. Golovatch, R.W. Gothe, B.S. Ishkhanov, E.L. Isupov, K.P. Adhikari, M. Aghasyan, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N.A. Baltzell et al., Phys. Rev. C 86, 035203 (2012). https://doi.org/10.1103/PhysRevC.86.035203

    Article  ADS  Google Scholar 

  9. V.I. Mokeev et al., Phys. Rev. C 86, 035203 (2012). https://doi.org/10.1103/PhysRevC.86.035203

    Article  ADS  Google Scholar 

  10. D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007). https://doi.org/10.1140/epja/i2007-10490-6

    Article  ADS  Google Scholar 

  11. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. ST 198, 141 (2011). https://doi.org/10.1140/epjst/e2011-01488-9

    Article  Google Scholar 

  12. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Chin. Phys. C 33, 1069 (2009). https://doi.org/10.1088/1674-1137/33/12/005

    Article  ADS  Google Scholar 

  13. S. Capstick, B.D. Keister, Phys. Rev. D 51, 3598 (1995). https://doi.org/10.1103/PhysRevD.51.3598

    Article  ADS  Google Scholar 

  14. E. Pace, G. Salmè, F. Cardarelli, S. Simula, Nuclear Physics A 666–667, 33 (2000). https://doi.org/10.1016/S0375-9474(00)00007-5. The Structure of the Nucleon

  15. I.G. Aznauryan, V.D. Burkert, Phys. Rev. C 85, 055202 (2012). https://doi.org/10.1103/PhysRevC.85.055202

    Article  ADS  Google Scholar 

  16. I.G. Aznauryan, V.D. Burkert, Phys. Rev. C 95, 065207 (2017). https://doi.org/10.1103/PhysRevC.95.065207

    Article  ADS  Google Scholar 

  17. G. Ramalho, Phys. Rev. D 95, 054008 (2017). https://doi.org/10.1103/PhysRevD.95.054008

    Article  ADS  Google Scholar 

  18. G. Ramalho, M.T. Peña, Phys. Rev. D 95, 014003 (2017). https://doi.org/10.1103/PhysRevD.95.014003

    Article  ADS  Google Scholar 

  19. G. Ramalho, K. Tsushima, Phys. Rev. D 84, 051301 (2011). https://doi.org/10.1103/PhysRevD.84.051301

    Article  ADS  Google Scholar 

  20. G. Ramalho, D. Jido, K. Tsushima, Phys. Rev. D 85, 093014 (2012). https://doi.org/10.1103/PhysRevD.85.093014

    Article  ADS  Google Scholar 

  21. D. Jido, M. Döring, E. Oset, Phys. Rev. C 77, 065207 (2008). https://doi.org/10.1103/PhysRevC.77.065207

  22. B. Golli, S. Širca, Eur. Phys. J. A 49, 111 (2013). https://doi.org/10.1140/epja/i2013-13111-y

    Article  ADS  Google Scholar 

  23. B. Julia-Diaz, T.S.H. Lee, A. Matsuyama, T. Sato, L.C. Smith, Phys. Rev. C 77, 045205 (2008). https://doi.org/10.1103/PhysRevC.77.045205

    Article  ADS  Google Scholar 

  24. C.S. An, B.S. Zou, Euro. Phys. J. A 39(2), 195 (2009). https://doi.org/10.1140/epja/i2008-10698-x

    Article  ADS  Google Scholar 

  25. K. Xu, A. Kaewsnod, Z. Zhao, X.Y. Liu, S. Srisuphaphon, A. Limphirat, Y. Yan, Phys. Rev. D 101, 076025 (2020). https://doi.org/10.1103/PhysRevD.101.076025

    Article  ADS  Google Scholar 

  26. A. Kaewsnod et al., Phys. Rev. D 105, 016008 (2022). https://doi.org/10.1103/PhysRevD.105.016008

    Article  ADS  Google Scholar 

  27. K. Xu, A. Kaewsnod, X.Y. Liu, S. Srisuphaphon, A. Limphirat, Y. Yan, Phys. Rev. C 100, 065207 (2019). https://doi.org/10.1103/PhysRevC.100.065207

    Article  ADS  Google Scholar 

  28. D. Dreschsel, L. Tiator, J. Phys. G 18(3), 449 (1992). https://doi.org/10.1088/0954-3899/18/3/004

    Article  ADS  Google Scholar 

  29. D. Drechsel, O. Hanstein, S. Kamalov, L. Tiator, Nucl. Phys. A 645(1), 145 (1999). https://doi.org/10.1016/S0375-9474(98)00572-7

    Article  ADS  Google Scholar 

  30. D. Drechsel, S.S. Kamalov, L. Tiator, Euro. Phys. J. A 34(1), 69 (2007). https://doi.org/10.1140/epja/i2007-10490-6

    Article  ADS  Google Scholar 

  31. V.I. Mokeev, V.D. Burkert, D.S. Carman, L. Elouadrhiri, G.V. Fedotov, E.N. Golovatch, R.W. Gothe, K. Hicks, B.S. Ishkhanov, E.L. Isupov, I. Skorodumina, Phys. Rev. C 93, 025206 (2016). https://doi.org/10.1103/PhysRevC.93.025206

    Article  ADS  Google Scholar 

  32. P. Zyla et al., PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  Google Scholar 

Download references

Acknowledgements

This research has received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation [grant number B05F640055]. A.K. and Y.Y. gratefully acknowledge funding from TSRI-Royal Golden Jubilee Ph.D. (RGJ-PHD) Program (Grant No. PHD/0242/2558) and SUT-OROG scholarship (contract no. 46/2558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attaphon Kaewsnod.

Additional information

Communicated by Rishi Sharma.

Appendices

Appendix A: Matrix elements of \(\gamma q\rightarrow q'\) for helicity amplitudes

The matrix elements of the single quark transition \(\gamma q\rightarrow q'\) for the helicity \(\lambda =0,1\) are derived in detail,

$$\begin{aligned}&T^0_{\uparrow \uparrow }=\ \left[ \dfrac{(E'+m)(E+m)}{4E'E}\right] ^\frac{1}{2}\left[ 1+ \dfrac{p_z'p_z+2p_-'p_+}{(E'+m)(E+m)}\right] , \nonumber \\&T^0_{\uparrow \downarrow }=\ \left[ \dfrac{(E'+m)(E+m)}{4E'E}\right] ^\frac{1}{2}\left[ \dfrac{\sqrt{2}(p_z'p_--p_-'p_z)}{(E'+m)(E+m)}\right] , \nonumber \\&T^0_{\downarrow \uparrow }=\ \left[ \dfrac{(E'+m)(E+m)}{4E'E}\right] ^\frac{1}{2}\left[ \dfrac{\sqrt{2}(-p_z'p_++p_+'p_z)}{(E'+m)(E+m)}\right] , \nonumber \\&T^0_{\downarrow \downarrow }=\ \left[ \dfrac{(E'+m)(E+m)}{4E'E}\right] ^\frac{1}{2}\left[ 1+\dfrac{p_z'p_z+2p_+'p_-}{(E'+m)(E+m)}\right] , \nonumber \\&T^+_{\uparrow \uparrow }=\ \left[ \dfrac{(E'+m)(E+m)}{4E'E}\right] ^\frac{1}{2}\left[ \dfrac{2p_+}{E+m}\right] , \nonumber \\&T^+_{\uparrow \downarrow }=\ \left[ \dfrac{(E'+m)(E+m)}{4E'E}\right] ^\frac{1}{2}\left[ -\dfrac{\sqrt{2}p_z}{E+m}+\dfrac{\sqrt{2}p_z'}{E'+m}\right] , \nonumber \\&T^+_{\downarrow \uparrow }=\ 0,\nonumber \\&T^+_{\downarrow \downarrow }=\ \left[ \dfrac{(E'+m)(E+m)}{4E'E}\right] ^\frac{1}{2}\left[ \dfrac{2p_+'}{E'+m}\right] , \end{aligned}$$
(A.1)

where E and \(E'\) are respectively the energies of the initial and final interacting quarks with the dynamical quark mass of u and d quarks as m, and \(p_{\pm }=\frac{1}{\sqrt{2}}(p_{x}\pm ip_{y})\).

Appendix B: Basis functions of symmetric, \(\rho \) and \(\lambda \) types

The basis functions \(\Psi _n^{[3]_S}\) of symmetric type in Table 1 as well as the basis functions of \(\rho \) and \(\lambda \) types in Tables 2 and 3 are constructed from the general harmonic oscillator wave functions \(\phi _{nlm}({\varvec{\rho }})\) and \(\phi _{nlm}({\varvec{\lambda }}) \),

$$\begin{aligned} \phi _{nlm}({\varvec{r}})&= R_{nl}(r)Y_{lm}({\varvec{{\hat{r}}}}),\nonumber \\ R_{nl}(r)&= \left[ \frac{2\alpha ^3n!}{(\frac{1}{2}+n+l)!}\right] ^\frac{1}{2} (\alpha r)^le^{-\frac{1}{2}\alpha ^2r^2}L^{l+\frac{1}{2}}_{n}(\alpha ^2r^2), \end{aligned}$$
(B.2)

with

$$\begin{aligned} {\varvec{\rho }}&= \frac{1}{\sqrt{2}}({\varvec{r}}_1-{\varvec{r}}_2),\nonumber \\ {\varvec{\lambda }}&= \frac{1}{\sqrt{6}}({\varvec{r}}_1+{\varvec{r}}_2-2{\varvec{r}}_3). \end{aligned}$$
(B.3)

where \(\alpha \) is the length parameter of the harmonic oscillator, \(Y_{lm}({\varvec{{\hat{r}}}})\) are the spherical harmonic, \(L^{l+\frac{1}{2}}_{n}\) are the associated Laguerre polynomials.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaewsnod, A., Xu, K., Zhao, Z. et al. Study of N(1520) and N(1535) structures via \(\gamma ^*p\rightarrow N^*\) transitions. Eur. Phys. J. A 58, 185 (2022). https://doi.org/10.1140/epja/s10050-022-00837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00837-0

Navigation