Skip to main content
Log in

Microscopic shell-model description of transitional nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A recently proposed microscopic version of the Bohr-Mottelson collective model, defined by the following dynamical symmetry chain \(Sp(12,R) \supset SU(1,1) \otimes SO(6) \supset U(1) \otimes SU_{pn}(3) \otimes SO(2) \supset SO(3)\) of the proton-neutron symplectic model (PNSM), is applied to the microscopic shell-model description of the low-lying collective excitations in two transitional nuclei, namely \(^{104}\)Ru and \(^{192}\)Os. Detailed shell-model results are presented for the excitation levels of the ground and \(\gamma \) bands in \(^{104}\)Ru, and the ground, \(\gamma \), and \(\beta \) bands in \(^{192}\)Os, as well as for the probability distributions and the quadrupole collectivity. A good overall description is obtained for the excitation energies of the bands under consideration for the two transitional nuclei without using an adjustable kinetic-energy term, as well as for the ground state intraband B(E2) quadrupole collectivity and the known interband B(E2) transition probabilities between the low-lying collective states without the use of an effective charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the data generated in this study are presented in the manuscript.]

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (W.A. Benjamin Inc, New York, 1975)

    MATH  Google Scholar 

  2. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)

    Article  ADS  Google Scholar 

  3. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  4. H. Ui, Prog. Theor. Phys. 44, 153 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford University, Oxford, 1990)

    Google Scholar 

  6. P. Iachello, Rev. Lett. 85, 3580 (2000)

    Article  ADS  Google Scholar 

  7. P. Iachello, Rev. Lett. 87, 052502 (2001)

    Article  ADS  Google Scholar 

  8. R.F. Casten, Nat. Phys. 2, 811 (2006)

    Article  Google Scholar 

  9. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  10. D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific Publisher Press, Singapore, 2010)

    Book  MATH  Google Scholar 

  11. D.J. Rowe, G. Thiamova, Nucl. Phys. A 760, 59 (2005)

    Article  ADS  Google Scholar 

  12. J.P. Elliott, Rep. Prog. Phys. 48, 171 (1985)

    Article  ADS  Google Scholar 

  13. K.L.G. Heyde, The Nuclear Shell Model (Springer-Verlag, Berlin Heidelberg, 1994)

    Book  Google Scholar 

  14. J.P. Elliott, Proc. R. Soc. A 245, 128 (1958)

    ADS  Google Scholar 

  15. J.P. Elliott, Proc. R. Soc. 245, 562 (1958)

    ADS  Google Scholar 

  16. R.D. Ratna Raju, J.P. Draayer, K.T. Hecht, Nucl. Phys. A 202, 433 (1973)

    Article  ADS  Google Scholar 

  17. J.P. Draayer, K.J. Weeks, Phys. Rev. Lett. 51, 1422 (1983)

    Article  ADS  Google Scholar 

  18. J.P. Draayer, K.J. Weeks, Ann. Phys. 156, 41 (1984)

    Article  ADS  Google Scholar 

  19. A.P. Zuker, J. Retamosa, A. Poves, E. Caurier, Phys. Rev. C 52, R1741 (1995)

    Article  ADS  Google Scholar 

  20. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, R.B. Cakirli, R.F. Casten, K. Blaum, Phys. Rev. C 95, 064325 (2017)

    Article  ADS  Google Scholar 

  21. G. Rosensteel, D.J. Rowe, Phys. Rev. Lett. 38, 10 (1977)

    Article  ADS  Google Scholar 

  22. H.G. Ganev, Eur. Phys. J. A 50, 183 (2014)

    Article  ADS  Google Scholar 

  23. H.G. Ganev, Eur. Phys. J. A 57, 181 (2021)

    Article  ADS  Google Scholar 

  24. H.G. Ganev, Chin. Phys. C 45, 114101 (2021)

  25. H.G. Ganev, Bulg. J. Phys. 48, 421 (2021)

    Article  Google Scholar 

  26. H.G. Ganev, Int. J. Mod. Phys. E 31, 2250047 (2022)

    Article  ADS  Google Scholar 

  27. H.G. Ganev, Eur. Phys. J. A 51, 84 (2015)

    Article  ADS  Google Scholar 

  28. M. Moshinsky, C. Quesne, J. Math. Phys. 11, 1631 (1970)

    Article  ADS  Google Scholar 

  29. A.J. Dragt, J. Math. Phys. 6, 533 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Chacon, O. Castanos, A. Frank, J. Math. Phys. 25, 1442 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  31. National Nuclear Data Center (NNDC), http://www.nndc.bnl.gov/

  32. S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  33. A. Frank, P. Van Isacker, P.D. Warner, Phys. Lett. B 197, 474 (1987)

    Article  ADS  Google Scholar 

  34. D. Troltenier et al., Z. Phys. A 338, 261 (1991)

    Article  ADS  Google Scholar 

  35. J. Stachel et al., Z. Phys. A 316, 105 (1984)

    Article  ADS  Google Scholar 

  36. J.A. Shannon et al., Phys. Lett. B 336, 136 (1994)

    Article  ADS  Google Scholar 

  37. A.E.L. Dieperink, R. Bijker, Phys. Lett. B 116, 77 (1982)

    Article  ADS  Google Scholar 

  38. J. Carvalho, P. Park, D.J. Rowe, G. Rosensteel, Phys. Lett. B 119, 249 (1982)

    Article  ADS  Google Scholar 

  39. P. Park, J. Carvalho, M. Vassanji, D.J. Rowe, G. Rosensteel, Nucl. Phys. A 414, 93 (1984)

    Article  ADS  Google Scholar 

  40. M. Jarrio, J.L. Wood, D.J. Rowe, Nucl. Phys. A 528, 409 (1991)

    Article  ADS  Google Scholar 

  41. J. Carvalho, D.J. Rowe, Nucl. Phys. A 548, 1 (1992)

    Article  ADS  Google Scholar 

  42. D.J. Rowe, Rep. Prog. Phys. 48, 1419 (1985)

    Article  ADS  Google Scholar 

  43. O. Castanos, J.P. Draayer, Y. Leschber, Z. Phys. A 329, 33 (1988)

    ADS  Google Scholar 

  44. Y.D. Devi, V.K.B. Kota, Pramana J. Phys. 39, 413 (1992)

    Article  ADS  Google Scholar 

  45. J. Stachel et al., Nucl. Phys. A 383, 429 (1982)

    Article  ADS  Google Scholar 

  46. J. Srebrny et al., Nucl. Phys. A 766, 25 (2006)

    Article  ADS  Google Scholar 

  47. K. Nomura et al., Phys. Rev. C 83, 054303 (2011)

    Article  ADS  Google Scholar 

  48. K. Nomura et al., Phys. Rev. C 84, 054316 (2011)

    Article  ADS  Google Scholar 

  49. N. Redon et al., Phys. Lett. B 181, 223 (1986)

    Article  ADS  Google Scholar 

  50. W. Boeglin et al., Nucl. Phys. A 477, 289 (1988)

    Article  Google Scholar 

  51. P. Sarriguren, R. Rodryguez-Guzman, L.M. Robledo, Phys. Rev. C 77, 064322 (2008)

    Article  ADS  Google Scholar 

  52. R.F. Casten, J.A. Cizewski, Nucl. Phys. A 309, 477 (1978)

    Article  ADS  Google Scholar 

  53. J.P. Draayer, Y. Leschber, S.C. Park, R. Lopez, Comput. Phys. Commun. 56, 279 (1989)

    Article  ADS  Google Scholar 

  54. D. Langr, T. Dytrych, J.P. Draayer, K.D. Launey, P. Tvrdik, Comput. Phys. Commun. 244, 442 (2019)

    Article  ADS  Google Scholar 

  55. C. Bahri, D. Rowe, Nucl. Phys. A 662, 125 (2000)

    Article  ADS  Google Scholar 

  56. R. Le Blanc, J. Carvalho, D.J. Rowe, Phys. Lett. B 140, 155 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  57. Y.Y. Sharon et al., Nucl. Phys. A 980, 131 (2018)

    Article  ADS  Google Scholar 

  58. D. J. Rowe, in Computational and Group-Theoretical Methods in Nuclear Physics, edited by J. Escher, O. Castanos, J. Hirsch, S. Pittel, and G. Stoitcheva (World Scientific, Singapore, 2004), pp. 165–173, arXiv:1106.1607 [nucl-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Ganev.

Additional information

Communicated by Mark Caprio.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganev, H.G. Microscopic shell-model description of transitional nuclei. Eur. Phys. J. A 58, 182 (2022). https://doi.org/10.1140/epja/s10050-022-00834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00834-3

Navigation