Skip to main content
Log in

Microscopic shell-model counterpart of the Bohr–Mottelson model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present paper we demonstrate that there exists a fully microscopic shell-model counterpart of the Bohr–Mottelson model by embedding the latter in the microscopic shell-model theory of atomic nucleus within the framework of the recently proposed fully microscopic proton-neutron symplectic model (PNSM). For this purpose, another shell-model coupling scheme of the PNSM is considered in which the basis states are classified by the algebraic structure \(SU(1,1) \otimes SO(6)\). It is shown that the configuration space of the PNSM contains a six-dimensional subspace that is closely related to the configuration space of the generalized quadrupole-monopole Bohr–Mottelson model and its dynamics splits into radial and orbital motions. The group SO(6) acting in this space, in contrast, e.g., to popular IBM, contains an SU(3) subgroup which allows to introduce microscopic shell-model counterparts of the exactly solvable limits of the Bohr–Mottelson model that closely parallel the relationship of the original Wilets-Jean and rotor models. The Wilets-Jean-type dynamics in the present approach, in contrast to the original collective model formulation, is governed by the microscopic shell-model intrinsic structure of the symplectic bandhead which defines the relevant Pauli allowed SO(6), and hence SU(3), subrepresentations. The original Wilets-Jean dynamics of the generalized Bohr–Mottelson model is recovered for the case of closed-shell nuclei, for which the symplectic bandhead structure is trivially reduced to the scalar or equivalent to it irreducible representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The article describes entirely theoretical research and no datasets were generated or analysed during the current study.]

Notes

  1. Throughout the present work, we will use the notation Sp(2n,R) for the group of linear canonical transformations in 2n-dimensional phase space. Some authors denote the Sp(2n,R) group by Sp(n,R).

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (W.A. Benjamin Inc., New York, 1975)

    MATH  Google Scholar 

  2. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)

    Article  ADS  Google Scholar 

  3. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  4. H. Ui, Prog. Theor. Phys. 44, 153 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Chacon, M. Moshinsky, J. Math. Phys. 18, 870 (1977)

    Article  ADS  Google Scholar 

  6. D. Troltenier, J. A. Maruhn, P. O. Hess, in Computational Nuclear Physics 1, ed. by K. Langanke, J. A. Maruhn, S. E. Koonin (Springer, Berlin, 1991)

  7. D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific Publisher Press, Singapore, 2010)

    Book  MATH  Google Scholar 

  8. D.J. Rowe, Nucl. Phys. A 735, 372 (2004)

    Article  ADS  Google Scholar 

  9. D.J. Rowe, P.S. Turner, Nucl. Phys. A 753, 94 (2005)

    Article  ADS  Google Scholar 

  10. D.J. Rowe, J. Phys. A Math. Gen. 38, 10181 (2005)

    Article  ADS  Google Scholar 

  11. J.P. Elliott, P. Park, J.A. Evance, Phys. Lett. B 171, 145 (1986)

    Article  ADS  Google Scholar 

  12. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  13. D.J. Rowe, G. Thiamova, Nucl. Phys. A 760, 59 (2005)

    Article  ADS  Google Scholar 

  14. J.P. Elliott, Rep. Prog. Phys. 48, 171 (1985)

    Article  ADS  Google Scholar 

  15. J.P. Elliott, J.A. Evance, P. Park, Phys. Lett. B 169, 309 (1986)

    Article  ADS  Google Scholar 

  16. J. Meyer-ter-Vehn, Phys. Lett. B 84, 10 (1979)

    Article  ADS  Google Scholar 

  17. D.J. Rowe, Rep. Prog. Phys. 48, 1419 (1985)

    Article  ADS  Google Scholar 

  18. D.J. Rowe, Prog. Part. Nucl. Phys. 37, 265 (1996)

    Article  ADS  Google Scholar 

  19. D.J. Rowe, G. Rosensteel, Phys. Rev. Lett. 38, 10 (1977)

    Article  ADS  Google Scholar 

  20. J.P. Elliott, Proc. R. Soc. A 245, 128 (1958). 245, 562 (1958)

    ADS  Google Scholar 

  21. H.G. Ganev, Eur. Phys. J. A 50, 183 (2014)

    Article  ADS  Google Scholar 

  22. D.R. Bes, Nucl. Phys. 10, 373 (1959)

    Article  Google Scholar 

  23. R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford University, Oxford, 1990)

    Google Scholar 

  24. L. Weaver, R.Y. Cusson, L.C. Biedenharn, Ann. Phys. (NY) 77, 250 (1973)

    Article  ADS  Google Scholar 

  25. O.L. Weaver, R.Y. Cussion, L.C. Biedenharn, Ann. Phys. (NY) 102, 493 (1976)

    Article  ADS  Google Scholar 

  26. G. Rosensteel, Ann. Phys. (NY) 186, 230 (1988)

    Article  ADS  Google Scholar 

  27. G. Rosensteel, N. Sparks, Eur. Phys. Lett. 119, 62001 (2017)

    Article  ADS  Google Scholar 

  28. H.G. Ganev, Eur. Phys. J. A 51, 84 (2015)

  29. H.G. Ganev, Phys. Rev. C 99, 054304 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  30. A.J. Dragt, J. Math. Phys. 6, 533 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Chacon, G. German, Physica 114 A, 301 (1982)

    Article  ADS  Google Scholar 

  32. E. Chacon, O. Castanos, A. Frank, J. Math. Phys. 25, 1442 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Le Blanc, D.J. Rowe, J. Phys. A Math. Gen. 19, 1111 (1986)

    Article  ADS  Google Scholar 

  34. M. Moshinsky, C. Quesne, J. Math. Phys. 11, 1631 (1970)

    Article  ADS  Google Scholar 

  35. V.V. Vanagas, Algebraic Methods in Nuclear Theory (Mintis, Vilnius, 1971). in Russian

    Google Scholar 

  36. R. Le Blanc, J. Carvalho, D.J. Rowe, Phys. Lett. B 140, 155 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Carvalho, D.J. Rowe, Nucl. Phys. A 548, 1 (1992)

    Article  ADS  Google Scholar 

  38. J. Carvalho, P. Park, D.J. Rowe, G. Rosensteel, Phys. Lett. B 119, 249 (1982)

    Article  ADS  Google Scholar 

  39. P. Park, J. Carvalho, M. Vassanji, D.J. Rowe, G. Rosensteel, Nucl. Phys. A 414, 93 (1984)

    Article  ADS  Google Scholar 

  40. M. Jarrio, J.L. Wood, D.J. Rowe, Nucl. Phys. A 528, 409 (1991)

    Article  ADS  Google Scholar 

  41. R.D. RatnaRaju, J.P. Draayer, K.T. Hecht, Nucl. Phys. A 202, 433 (1973)

    Article  ADS  Google Scholar 

  42. J.P. Draayer, K.J. Weeks, Phys. Rev. Lett. 51, 1422 (1983)

    Article  ADS  Google Scholar 

  43. J.P. Draayer, K.J. Weeks, Ann. Phys. 156, 41 (1984)

    Article  ADS  Google Scholar 

  44. National Nuclear Data Center (NNDC). http://www.nndc.bnl.gov/

  45. O. Castanos, J.P. Draayer, Y. Leschber, Z. Phys. A 329, 33 (1988)

    ADS  Google Scholar 

  46. H. G. Ganev, Matrix elements in the SU(1,1) \(\otimes \) SO(6) limit of the proton–neutron symplectic model (to be published)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Ganev.

Additional information

Communicated by Mark Caprio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganev, H.G. Microscopic shell-model counterpart of the Bohr–Mottelson model. Eur. Phys. J. A 57, 181 (2021). https://doi.org/10.1140/epja/s10050-021-00504-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00504-w

Navigation