Skip to main content
Log in

Dilepton helical production in a vortical quark-gluon plasma

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper, we propose an observable counting a weighted difference between right-handed and left-handed lepton pairs, which is coined dilepton helical rate. The weight is the momentum difference of the lepton pairs projected onto an auxiliary vector. We derive the helical rate in a quark-gluon plasma with a vorticity in the limit when the quark and lepton masses are ignored. We find the helical rate is maximized when the auxiliary vector is parallel to the vorticity, in which case it has a nearly spherical oblate ellipsoidal distribution. We propose that it can be used as a vortical-meter for quark-gluon plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this paper because no datasets were generated or analyzed in the current study.]

Notes

  1. By right-handed lepton pairs, we refe r to right-handed fermion and left-handed anti-fermion. Similar terminology applies to left-handed spinors.

  2. Here we use helicity of spinor, i.e. both right-handed electron and left-handed positron carry helicity one half.

References

  1. W.T. Deng, X.G. Huang, Phys. Rev. C 93(6), 064907 (2016). https://doi.org/10.1103/PhysRevC.93.064907. arXiv:1603.06117 [nucl-th]

    Article  ADS  Google Scholar 

  2. Y. Jiang, Z.W. Lin, J. Liao, Phys. Rev. C 94(4), 044910 (2016) [erratum: Phys. Rev. C 95(4), 049904 (2017)]. https://doi.org/10.1103/PhysRevC.94.044910. arXiv:1602.06580 [hep-ph]

  3. Z.T. Liang, X.N. Wang, Phys. Rev. Lett. 94, 102301 (2005) [erratum: Phys. Rev. Lett. 96, 039901 (2006)]. https://doi.org/10.1103/PhysRevLett.94.102301. arXiv:nucl-th/0410079 [nucl-th]

  4. Z.T. Liang, X.N. Wang, Phys. Lett. B 629, 20–26 (2005). https://doi.org/10.1016/j.physletb.2005.09.060. arXiv:nucl-th/0411101 [nucl-th]

    Article  ADS  Google Scholar 

  5. F. Becattini, F. Piccinini, J. Rizzo, Phys. Rev. C 77, 024906 (2008). https://doi.org/10.1103/PhysRevC.77.024906. arXiv:0711.1253 [nucl-th]

    Article  ADS  Google Scholar 

  6. B. Betz, M. Gyulassy, G. Torrieri, Phys. Rev. C 76, 044901 (2007). https://doi.org/10.1103/PhysRevC.76.044901. arXiv:0708.0035 [nucl-th]

    Article  ADS  Google Scholar 

  7. J.H. Gao, S.W. Chen, Wt. Deng, Z.T. Liang, Q. Wang, X.N. Wang, Phys. Rev. C 77, 044902 (2008). https://doi.org/10.1103/PhysRevC.77.044902. arXiv:0710.2943 [nucl-th]

    Article  ADS  Google Scholar 

  8. X.G. Huang, P. Huovinen, X.N. Wang, Phys. Rev. C 84, 054910 (2011). https://doi.org/10.1103/PhysRevC.84.054910. arXiv:1108.5649 [nucl-th]

    Article  ADS  Google Scholar 

  9. L. Adamczyk, et al. [STAR], Nature 548, 62-65 (2017). https://doi.org/10.1038/nature23004. arXiv:1701.06657 [nucl-ex]

  10. F. Becattini, I. Karpenko, Phys. Rev. Lett. 120(1), 012302 (2018). https://doi.org/10.1103/PhysRevLett.120.012302. arXiv:1707.07984 [nucl-th]

    Article  ADS  Google Scholar 

  11. D.X. Wei, W.T. Deng, X.G. Huang, Phys. Rev. C 99(1), 014905 (2019). https://doi.org/10.1103/PhysRevC.99.014905. arXiv:1810.00151 [nucl-th]

    Article  ADS  Google Scholar 

  12. H.Z. Wu, L.G. Pang, X.G. Huang, Q. Wang, Phys. Rev. Res. 1, 033058 (2019). https://doi.org/10.1103/PhysRevResearch.1.033058. arXiv:1906.09385 [nucl-th]

    Article  Google Scholar 

  13. B. Fu, K. Xu, X.G. Huang, H. Song, Phys. Rev. C 103(2), 024903 (2021). https://doi.org/10.1103/PhysRevC.103.024903. arXiv:2011.03740 [nucl-th]

    Article  ADS  Google Scholar 

  14. S.Y.F. Liu, Y. Sun, C.M. Ko, Phys. Rev. Lett. 125(6), 062301 (2020). https://doi.org/10.1103/PhysRevLett.125.062301. arXiv:1910.06774 [nucl-th]

    Article  ADS  Google Scholar 

  15. J. Adam, et al. [STAR], Phys. Rev. Lett. 123(13), 132301 (2019). https://doi.org/10.1103/PhysRevLett.123.132301. arXiv:1905.11917 [nucl-ex]

  16. B. Fu, S.Y.F. Liu, L. Pang, H. Song, Y. Yin, Phys. Rev. Lett. 127(14), 142301 (2021). https://doi.org/10.1103/PhysRevLett.127.142301. arXiv:2103.10403 [hep-ph]

    Article  ADS  Google Scholar 

  17. S.Y.F. Liu, Y. Yin, JHEP 07, 188 (2021). https://doi.org/10.1007/JHEP07(2021)188. arXiv:2103.09200 [hep-ph]

    Article  ADS  Google Scholar 

  18. F. Becattini, M. Buzzegoli, A. Palermo, Phys. Lett. B 820, 136519 (2021). https://doi.org/10.1016/j.physletb.2021.136519. arXiv:2103.10917 [nucl-th]

    Article  Google Scholar 

  19. F. Becattini, M. Buzzegoli, A. Palermo, G. Inghirami, I. Karpenko, Phys. Rev. Lett. 127(27), 272302 (2021). https://doi.org/10.1103/PhysRevLett.127.272302. arXiv:2103.14621 [nucl-th]

  20. C. Yi, S. Pu, D.L. Yang, Phys. Rev. C 104(6), 064901 (2021). https://doi.org/10.1103/PhysRevC.104.064901. arXiv:2106.00238 [hep-ph]

    Article  ADS  Google Scholar 

  21. W. Florkowski, A. Kumar, A. Mazeliauskas, R. Ryblewski, Phys. Rev. C 105(6), 064901(2022). https://doi.org/10.1103/PhysRevC.105.064901. arXiv:2112.02799 [hep-ph]

  22. Z. Wang, X. Guo, S. Shi, P. Zhuang, Phys. Rev. D 100(1), 014015 (2019). https://doi.org/10.1103/PhysRevD.100.014015. arXiv:1903.03461 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Weickgenannt, X.L. Sheng, E. Speranza, Q. Wang, D.H. Rischke, Phys. Rev. D 100(5), 056018 (2019). https://doi.org/10.1103/PhysRevD.100.056018. arXiv:1902.06513 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  24. J.H. Gao, Z.T. Liang, Phys. Rev. D 100(5), 056021 (2019). https://doi.org/10.1103/PhysRevD.100.056021. arXiv:1902.06510 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Li, H.U. Yee, Phys. Rev. D 100(5), 056022 (2019). https://doi.org/10.1103/PhysRevD.100.056022. arXiv:1905.10463 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Hattori, Y. Hidaka, D.L. Yang, Phys. Rev. D 100(9), 096011 (2019). https://doi.org/10.1103/PhysRevD.100.096011. arXiv:1903.01653 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  27. Jj. Zhang, Rh. Fang, Q. Wang, X.N. Wang, Phys. Rev. C 100(6), 064904 (2019). https://doi.org/10.1103/PhysRevC.100.064904. arXiv:1904.09152 [nucl-th]

    Article  ADS  Google Scholar 

  28. Y.C. Liu, K. Mameda, X.G. Huang, Chin. Phys. C 44(9), 094101 (2020) [erratum: Chin. Phys. C 45(8), 089001 (2021)]. https://doi.org/10.1088/1674-1137/ac009b. arXiv:2002.03753 [hep-ph]

  29. X. Guo, Chin. Phys. C 44(10), 104106 (2020). https://doi.org/10.1088/1674-1137/ababf9. arXiv:2005.00228 [hep-ph]

    Article  ADS  Google Scholar 

  30. J.H. Gao, Z.T. Liang, Q. Wang, Phys. Rev. D 101(9), 096015 (2020). https://doi.org/10.1103/PhysRevD.101.096015. arXiv:1910.11060 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Carignano, C. Manuel, J.M. Torres-Rincon, Phys. Rev. D 102(1), 016003 (2020). https://doi.org/10.1103/PhysRevD.102.016003. arXiv:1908.00561 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Yamamoto, D.L. Yang, Astrophys. J. 895(1), 56 (2020). https://doi.org/10.3847/1538-4357/ab8468. arXiv:2002.11348 [astro-ph.HE]

    Article  ADS  Google Scholar 

  33. D.L. Yang, K. Hattori, Y. Hidaka, JHEP 07, 070 (2020). https://doi.org/10.1007/JHEP07(2020)070. arXiv:2002.02612 [hep-ph]

    Article  ADS  Google Scholar 

  34. Z. Wang, X. Guo, P. Zhuang, Eur. Phys. J. C 81(9), 799 (2021). https://doi.org/10.1140/epjc/s10052-021-09586-8. arXiv:2009.10930 [hep-th]

    Article  ADS  Google Scholar 

  35. S. Shi, C. Gale, S. Jeon, Phys. Rev. C 103(4), 044906 (2021). https://doi.org/10.1103/PhysRevC.103.044906. arXiv:2008.08618 [nucl-th]

    Article  ADS  Google Scholar 

  36. N. Weickgenannt, E. Speranza, Xl. Sheng, Q. Wang, D.H. Rischke, Phys. Rev. Lett. 127(5), 052301 (2021). https://doi.org/10.1103/PhysRevLett.127.052301. arXiv:2005.01506 [hep-ph]

    Article  ADS  Google Scholar 

  37. D. Hou, S. Lin, Phys. Lett. B 818, 136386 (2021). https://doi.org/10.1016/j.physletb.2021.136386. arXiv:2008.03862 [hep-ph]

    Article  Google Scholar 

  38. N. Weickgenannt, E. Speranza, Xl. Sheng, Q. Wang, D.H. Rischke, Phys. Rev. D 104(1), 016022 (2021). https://doi.org/10.1103/PhysRevD.104.016022. arXiv:2103.04896 [nucl-th]

    Article  ADS  Google Scholar 

  39. X.L. Sheng, N. Weickgenannt, E. Speranza, D.H. Rischke, Q. Wang, Phys. Rev. D 104(1), 016029 (2021). https://doi.org/10.1103/PhysRevD.104.016029. arXiv:2103.10636 [nucl-th]

    Article  ADS  Google Scholar 

  40. Z. Wang, P. Zhuang. arXiv:2105.00915 [hep-ph]

  41. Z. Wang, P. Zhuang. arXiv:2101.00586 [hep-ph]

  42. S. Lin, Phys. Rev. D 105(7), 076017 (2022). https://doi.org/10.1103/PhysRevD.105.076017. arXiv:2109.00184 [hep-ph]

  43. Z. Chen, S. Lin, Phys. Rev. D 105(1), 014015 (2022). https://doi.org/10.1103/PhysRevD.105.014015. arXiv:2109.08440 [hep-ph]

  44. W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, E. Speranza, Phys. Rev. D 97(11), 116017 (2018). https://doi.org/10.1103/PhysRevD.97.116017. arXiv:1712.07676 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  45. W. Florkowski, B. Friman, A. Jaiswal, E. Speranza, Phys. Rev. C 97(4), 041901 (2018). https://doi.org/10.1103/PhysRevC.97.041901. arXiv:1705.00587 [nucl-th]

    Article  ADS  Google Scholar 

  46. F. Becattini, W. Florkowski, E. Speranza, Phys. Lett. B 789, 419–425 (2019). https://doi.org/10.1016/j.physletb.2018.12.016. arXiv:1807.10994 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  47. K. Hattori, M. Hongo, X.G. Huang, M. Matsuo, H. Taya, Phys. Lett. B 795, 100–106 (2019). https://doi.org/10.1016/j.physletb.2019.05.040. arXiv:1901.06615 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  48. W. Florkowski, A. Kumar, R. Ryblewski, Prog. Part. Nucl. Phys. 108, 103709 (2019). https://doi.org/10.1016/j.ppnp.2019.07.001. arXiv:1811.04409 [nucl-th]

    Article  Google Scholar 

  49. S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. Ryblewski, Phys. Lett. B 814, 136096 (2021). https://doi.org/10.1016/j.physletb.2021.136096. arXiv:2002.03937 [hep-ph]

    Article  Google Scholar 

  50. H.H. Peng, J.J. Zhang, X.L. Sheng, Q. Wang, Chin. Phys. Lett. 38(11), 116701 (2021). https://doi.org/10.1088/0256-307X/38/11/116701. arXiv:2107.00448 [hep-th]

    Article  ADS  Google Scholar 

  51. A.D. Gallegos, U. Gürsoy, A. Yarom, SciPost Phys. 11, 041 (2021). https://doi.org/10.21468/SciPostPhys.11.2.041. arXiv:2101.04759 [hep-th]

    Article  ADS  Google Scholar 

  52. M. Hongo, X.G. Huang, M. Kaminski, M. Stephanov, H.U. Yee, JHEP 11, 150 (2021). https://doi.org/10.1007/JHEP11(2021)150. arXiv:2107.14231 [hep-th]

    Article  ADS  Google Scholar 

  53. K. Dusling, S. Lin, Nucl. Phys. A 809, 246–258 (2008). https://doi.org/10.1016/j.nuclphysa.2008.06.007. arXiv:0803.1262 [nucl-th]

    Article  ADS  Google Scholar 

  54. E. Speranza, A. Jaiswal, B. Friman, Phys. Lett. B 782, 395–400 (2018). https://doi.org/10.1016/j.physletb.2018.05.053. arXiv:1802.02479 [hep-ph]

    Article  ADS  Google Scholar 

  55. A. Ipp, A. Di Piazza, J. Evers, C.H. Keitel, Phys. Lett. B 666, 315–319 (2008). https://doi.org/10.1016/j.physletb.2008.07.076. arXiv:0710.5700 [hep-ph]

    Article  ADS  Google Scholar 

  56. G. Baym, T. Hatsuda, PTEP 2015(3), 031D01 (2015). https://doi.org/10.1093/ptep/ptv024. arXiv:1405.1376 [nucl-th]

    Article  Google Scholar 

  57. G. Baym, T. Hatsuda, M. Strickland, Phys. Rev. C 95(4), 044907 (2017). https://doi.org/10.1103/PhysRevC.95.044907. arXiv:1702.05906 [nucl-th]

    Article  ADS  Google Scholar 

  58. K. Tuchin, Phys. Rev. C 83, 017901 (2011). https://doi.org/10.1103/PhysRevC.83.017901. arXiv:1008.1604 [nucl-th]

    Article  ADS  Google Scholar 

  59. K. Tuchin, Phys. Rev. C 87(2), 024912 (2013). https://doi.org/10.1103/PhysRevC.87.024912. arXiv:1206.0485 [hep-ph]

    Article  ADS  Google Scholar 

  60. B. Muller, S.Y. Wu, D.L. Yang, Phys. Rev. D 89(2), 026013 (2014). https://doi.org/10.1103/PhysRevD.89.026013. arXiv:1308.6568 [hep-th]

    Article  ADS  Google Scholar 

  61. G. Arciniega, F. Nettel, P. Ortega, L. Patiño, JHEP 04, 192 (2014). https://doi.org/10.1007/JHEP04(2014)192. arXiv:1307.1153 [hep-th]

    Article  ADS  Google Scholar 

  62. A. Bandyopadhyay, C.A. Islam, M.G. Mustafa, Phys. Rev. D 94(11), 114034 (2016). https://doi.org/10.1103/PhysRevD.94.114034. arXiv:1602.06769 [hep-ph]

    Article  ADS  Google Scholar 

  63. X. Wang, I.A. Shovkovy, L. Yu, M. Huang, Phys. Rev. D 102(7), 076010 (2020). https://doi.org/10.1103/PhysRevD.102.076010. arXiv:2006.16254 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  64. J. Chao, M. Huang, Commun. Theor. Phys. 72(11), 115301 (2020). https://doi.org/10.1088/1572-9494/aba25e. arXiv:1609.04966 [hep-ph]

    Article  ADS  Google Scholar 

  65. X. Wang, I. Shovkovy, Phys. Rev. D 104(5), 056017 (2021). https://doi.org/10.1103/PhysRevD.104.056017. arXiv:2103.01967 [nucl-th]

    Article  ADS  Google Scholar 

  66. X. Wang, I. Shovkovy, Eur. Phys. J. C 81(10), 901 (2021). https://doi.org/10.1140/epjc/s10052-021-09650-3. arXiv:2106.09029 [nucl-th]

    Article  ADS  Google Scholar 

  67. A. Das, A. Bandyopadhyay, C.A. Islam. arXiv:2109.00019 [hep-ph]

  68. M. Wei, C.A. Islam, M. Huang, Rev. D 105(5), 054014(2022). https://doi.org/10.1103/PhysRevD.105.054014. arXiv:2111.05192 [hep-ph]

  69. K.A. Mamo, H.U. Yee, Phys. Rev. D 88(11), 114029 (2013). https://doi.org/10.1103/PhysRevD.88.114029. arXiv:1307.8099 [nucl-th]

    Article  ADS  Google Scholar 

  70. K.A. Mamo, H.U. Yee, Phys. Rev. D 93(6), 065053 (2016). https://doi.org/10.1103/PhysRevD.93.065053. arXiv:1512.01316 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  71. H.U. Yee, Phys. Rev. D 88(2), 026001 (2013). https://doi.org/10.1103/PhysRevD.88.026001. arXiv:1303.3571 [nucl-th]

    Article  ADS  Google Scholar 

  72. M.L. Bellac. https://doi.org/10.1017/CBO9780511721700

  73. Jh. Gao, J.Y. Pang, Q. Wang, Phys. Rev. D 100(1), 016008 (2019). https://doi.org/10.1103/PhysRevD.100.016008. arXiv:1810.02028 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  74. Rh. Fang, Lg. Pang, Q. Wang, Xn. Wang, Phys. Rev. C 94(2), 024904 (2016). https://doi.org/10.1103/PhysRevC.94.024904. arXiv:1604.04036 [nucl-th]

    Article  ADS  Google Scholar 

  75. Y. Hidaka, S. Pu, D.L. Yang, Phys. Rev. D 95(9), 091901 (2017). https://doi.org/10.1103/PhysRevD.95.091901. arXiv:1612.04630 [hep-th]

  76. S.Z. Yang, J.H. Gao, Z.T. Liang, Q. Wang, Phys. Rev. D 102(11), 116024 (2020). https://doi.org/10.1103/PhysRevD.102.116024. arXiv:2003.04517 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  77. L. McLerran, V. Skokov, Nucl. Phys. A 929, 184–190 (2014). https://doi.org/10.1016/j.nuclphysa.2014.05.008. arXiv:1305.0774 [hep-ph]

    Article  ADS  Google Scholar 

  78. S. Singha [STAR], Nucl. Phys. A 1005, 121733 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121733. arXiv:2002.07427 [nucl-ex]

Download references

Acknowledgements

We are grateful to Xu-Guang Huang for useful discussions. This work is in part supported by NSFC under Grant Nos 12075328, 11735007 and 11675274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Dong.

Additional information

Communicated by Ralf Rapp

Limits of \(\mathcal {C}_n\) and \({\chi }_n\) at small q

Limits of \(\mathcal {C}_n\) and \({\chi }_n\) at small q

We are interested in the behavior of \(\mathcal {C}_{n}\) in the limit where q tends to zero. We start with the following small q expansions of \({\chi }_n\), which are easily obtained from (16)

$$\begin{aligned} \chi _{2}&=-\frac{q_{0}^{2}e^{q_{0}/2T}}{4T(1+e^{q_{0}/2T})^{3}}\nonumber \\&\quad -\frac{ q^{2}e^{q_{0}/2T}(8+8e^{q_{0}/T}-\frac{8q_{0}}{T}+\frac{q_{0}^{2}}{T^{2}}+e^{q_{0}/2T}(16-\frac{8q_{0}}{T}-\frac{3q_{0}^{2}}{T^{2}}))}{96T(1+e^{q_{0}/2T})^{5}}\nonumber \\&\quad +\mathcal {O}[q]^{4},\nonumber \\ \chi _{1}&=-\frac{q_{0}e^{q_{0}/2T}}{2T(1+e^{q_{0}/2T})^{3}} +\frac{ q^{2}e^{q_{0}/2T}(4-\frac{q_{0}}{T}+e^{q_{0}/2T}(4+\frac{3q_{0}}{T}))}{48T^{2}(1+e^{q_{0}/2T})^{5}}\nonumber \\&\quad +\mathcal {O}[q]^{4},\nonumber \\ \chi _{0}&=-\frac{e^{q_{0}/2T}}{T(1+e^{q_{0}/2T})^{3}} +\frac{ q^{2}e^{q_{0}/2T}(-1+3e^{q_{0}/2T}))}{24T^{3}(1+e^{q_{0}/2T})^{5}} +\mathcal {O}[q]^{4}.\nonumber \\ \end{aligned}$$
(53)

these results in (53) clearly display that all the terms in the expansion are finite and even in q. The finiteness of the expansion is a consequence of cancellation between divergent integrand and vanishing integration domain. We only need to consider the contribution given by the leading order and the next leading order terms of \(\chi _{n}\). Plugging (53) into (15), we find the following limits for \(\mathcal {C}_n\)

$$\begin{aligned}&\mathcal {C}_{1}(q\rightarrow {0})=0,\ \ \ \ \mathcal {C}_{2}(q\rightarrow {0})=\frac{1}{3}\frac{q_{0}^{2}e^{q_{0}/2T}}{T(1+e^{q_{0}/2T})^3}, \nonumber \\&\quad \mathcal {C}_{3}(q\rightarrow {0})=0. \end{aligned}$$
(54)

Plugging (54) into (51), we can obtain

$$\begin{aligned} R_{1}=\frac{q_{0}^{3}e^{q_{0}/2T}}{3T(1+e^{q_{0}/2T})^{3}},\ \ \ R_{2}=0. \end{aligned}$$
(55)

which have been used in Fig. 1 at \(q/{\pi }T =0\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Lin, S. Dilepton helical production in a vortical quark-gluon plasma. Eur. Phys. J. A 58, 176 (2022). https://doi.org/10.1140/epja/s10050-022-00818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00818-3

Navigation