Skip to main content
Log in

Post fission time evolution calculation by FIFRELIN coupled with PHITS and DCHAIN

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Fission reaction Monte–Carlo code FIFRELIN is interfaced to a general-purpose radiation transport simulation code PHITS to calculate the time evolution of observables after fission reactions. By feeding the isotopic fission yield data of FIFRELIN to DCHAIN-PHITS, the burn-up calculation functionality of PHITS based on the activation and decay data libraries and the Bateman equation, the time evolution of decay heat from 0.2 to 10\(^5\) seconds after the \(^{235}\)U(n\(_{th}\),fission) pulse was calculated and compared with literature data. The comparison illustrated that the latest FIFRELIN can accurately predict the time evolution of decay heat, whereas the previous version of FIFRELIN overestimated the decay heat in the first 10 sec. In addition to burn-up calculations, transport simulations of both prompt and delayed radiation can be performed by passing their spectra calculated by FIFRELIN to particle transport functionality of PHITS. This combination helps design detectors, experiments, and shielding based on the accurate fission physics of FIFRELIN. Being interfaced to PHITS, FIFRELIN is a powerful tool for studying the observables of fission reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. A. Koning, D. Rochman, J.C. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, Nuclear Data Sheets 155, 1 (2019). https://doi.org/10.1016/j.nds.2019.01.002. ’www.sciencedirect.com/science/article/pii/S009037521930002X’. Special Issue on Nuclear Reaction Data

  2. A. Koning, D. Rochman, Nucl. Data Sheets 113(12), 2841 (2012). https://doi.org/10.1016/j.nds.2012.11.002. www.sciencedirect.com/science/article/pii/S0090375212000889. Special Issue on Nuclear Reaction Data

  3. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, K. Shibata, Nucl. Data Sheets 131, 259 (2016). https://doi.org/10.1016/j.nds.2015.12.004. www.sciencedirect.com/science/article/pii/S0090375215000691. Special Issue on Nuclear Reaction Data

  4. M. Herman, R. Capote, B. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108(12), 2655 (2007). https://doi.org/10.1016/j.nds.2007.11.003. www.sciencedirect.com/science/article/pii/S0090375207000981. Special Issue on Evaluations of Neutron Cross Sections

  5. T. Kawano, in Compound-Nuclear Reactions (Springer, 2021), pp. 27–34

  6. J. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 222, 263 (2018). https://doi.org/10.1016/j.cpc.2017.09.006. www.sciencedirect.com/science/article/pii/S001046551730293X

  7. K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016). https://doi.org/10.1016/j.nds.2015.12.009. www.sciencedirect.com/science/article/pii/S0090375215000745. Special Issue on Nuclear Reaction Data

  8. P. Talou, I. Stetcu, P. Jaffke, M. Rising, A. Lovell, T. Kawano, Computer Phys. Commun. 269, 108087 (2021). https://doi.org/10.1016/j.cpc.2021.108087. www.sciencedirect.com/science/article/pii/S0010465521001995

  9. O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51(12), 1 (2015)

    Article  Google Scholar 

  10. J. Kopecky, M. Uhl, R. Chrien, Phys. Rev. C 47(1), 312 (1993)

    Article  ADS  Google Scholar 

  11. A. Koning, J. Delaroche, Nucl. Phys. A 713(3), 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0. www.sciencedirect.com/science/article/pii/S0375947402013210

  12. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43(8), 1446 (1965). https://doi.org/10.1139/p65-139

    Article  ADS  Google Scholar 

  13. R. Capote, M. Herman, P. Obloinsky, P. Young, S. Goriely, T. Belgya, A. Ignatyuk, A. Koning, S. Hilaire, V. Plujko, M. Avrigeanu, O. Bersillon, M. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V. Maslov, G. Reffo, M. Sin, E. Soukhovitskii, P. Talou, Nucl. Data Sheets 110(12), 3107 (2009). https://doi.org/10.1016/j.nds.2009.10.004. www.sciencedirect.com/science/article/pii/S0090375209000994. Special Issue on Nuclear Reaction Data

  14. D. Regnier, O. Litaize, O. Serot, Phys. Proc. 31(Complete), 59 (2012). https://doi.org/10.1016/j.phpro.2012.04.009

  15. A. Chebboubi, O. Litaize, O. Serot, EPJ Web Conf. 193, 01003 (2018). https://doi.org/10.1051/epjconf/201819301003

    Article  Google Scholar 

  16. O. Litaize, O. Serot, D. Regnier, S. Theveny, S. Onde, Phys. Proc. 31, 51 (2012). https://doi.org/10.1016/j.phpro.2012.04.008. https://www.sciencedirect.com/science/article/pii/S1875389212011947. GAMMA-1 Emission of Prompt Gamma-Rays in Fission and Related Topics

  17. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. Cox, J. Durkee, J. Elson, M. Fensin, R. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, Z. T, Nucl. Technol. 180(3), 298 (2012)

    Article  Google Scholar 

  18. E. Brun, F. Damian, C. Diop, E. Dumonteil, F. Hugot, C. Jouanne, Y. Lee, F. Malvagi, A. Mazzolo, O. Petit et al., Ann. Nucl. Energy 82, 151 (2015)

    Article  Google Scholar 

  19. O. Petit, C. Jouanne, O. Litaize, O. Serot, A. Chebboubi, Y. Pénéliau, in EPJ Web of Conferences, vol. 153 (EDP Sciences, 2017), 153, 06003

  20. T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. ichiro Abe, T. Kai, P.E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Niita, J. Nucl. Sci. Technol. 55(6), 684 (2018). https://doi.org/10.1080/00223131.2017.1419890

    Article  Google Scholar 

  21. T. Kai, F. Maekawa, Y. Kasugai, H. Takada, Y. Ikeda, K. Kosako, Dchain-sp 2001: High energy particle induced radioactivity calculation code. Tech. rep., Japan Atomic Energy Research Inst. (2001)

  22. H.N. Ratliff, N. Matsuda, S. ichiro Abe, T. Miura, T. Furuta, Y. Iwamoto, T. Sato, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 484, 29 (2020). https://doi.org/10.1016/j.nimb.2020.10.005. https://www.sciencedirect.com/science/article/pii/S0168583X20304225

  23. J.M. Laborie, R. Billnert, G. Bélier, A. Oberstedt, S. Oberstedt, J. Taieb, Phys. Rev. C 98, 054604 (2018). https://doi.org/10.1103/PhysRevC.98.054604

    Article  ADS  Google Scholar 

  24. O. Litaize, O. Serot, D. Regnier, C. Manailescu, Nucl. Data Sheets 118, 216 (2014). https://doi.org/10.1016/j.nds.2014.04.040. www.sciencedirect.com/science/article/pii/S0090375214000702

  25. Y.K. Gupta, D.C. Biswas, O. Serot, D. Bernard, O. Litaize, S. Julien-Laferrière, A. Chebboubi, G. Kessedjian, C. Sage, A. Blanc, H. Faust, U. Köster, A. Ebran, L. Mathieu, A. Letourneau, T. Materna, S. Panebianco, Phys. Rev. C 96, 014608 (2017). https://doi.org/10.1103/PhysRevC.96.014608

    Article  ADS  Google Scholar 

  26. P. Geltenbort, F. Gonnenwein, A. Oed, Radiat. Effects 93(1–4), 57 (1986). https://doi.org/10.1080/00337578608207429

    Article  Google Scholar 

  27. A.C. Wahl, Atom. Data Nucl. Data Tables 39(1), 1 (1988). https://doi.org/10.1016/0092-640X(88)90016-2. www.sciencedirect.com/science/article/pii/0092640X88900162

  28. Compilation and Evaluation of Fission Yield Nuclear Data. No. 1168 in TECDOC Series (INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2001). https://www.iaea.org/publications/6027/compilation-and-evaluation-of-fission-yield-nuclear-data

  29. T. Kibedi, T. Burrows, M. Trzhaskovskaya, P. Davidson, C. Nestor, Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerat. Spectromet Detect. Assoc. Equip. 589(2), 202 (2008). https://doi.org/10.1016/j.nima.2008.02.051. www.sciencedirect.com/science/article/pii/S0168900208002520

  30. Y. Iwamoto, T. Sato, S. Hashimoto, T. Ogawa, T. Furuta, S. ichiro Abe, T. Kai, N. Matsuda, R. Hosoyamada, K. Niita, J. Nucl. Sci. Technol. 54(5), 617 (2017). https://doi.org/10.1080/00223131.2017.1297742

  31. H. Hirayama, Y. Namito, W.R. Nelson, A.F. Bielajew, S.J. Wilderman, U. Michigan, The egs5 code system. Tech. rep., United States. Department of Energy (2005)

  32. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otsuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Ichi Katakura, J. Nucl. Sci. Technol. 48(1), 1 (2011). https://doi.org/10.1080/18811248.2011.9711675

  33. A. Santamarina, D. Bernard, P. Blaise, M. Coste, A. Courcelle, T. Huynh, C. Jouanne, P. Leconte, O. Litaize, S. Mengelle et al., JEFF Rep. 22(10.2), 2 (2009)

  34. J.K. Dickens, T.A. Love, J.W. McConnell, R.W. Peelle, Nucl. Sci. Eng. 74(2), 106 (1980). https://doi.org/10.13182/NSE80-A19627

  35. A. Tobias, Derivation of decay heat benchmarks for u235 and pu239 by a least squares fit to measured data. Tech. rep., Central Electricity Generating Board (1989)

  36. D.A. Brown, M. Chadwick, R. Capote, A. Kahler, A. Trkov, M. Herman, A. Sonzogni, Y. Danon, A. Carlson, M. Dunn et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  37. J. I Katakura, F. Minato, Jendl decay data file 2015. Tech. rep., Japan Atomic Energy Agency (2016)

  38. M. Bhat, in Nuclear data for science and technology (Springer, 1992), pp. 817–821

  39. J. Kopecky, H. Van der Kamp, H. Gruppelaar, D. Nierop, The european activation file eaf-3 with neutron activation and transmutation cross-sections. Tech. rep., Netherlands Energy Research Foundation (ECN) (1992)

  40. A. Pashchenko, in Proc. Int. Workshop on Nuclear Data for Fusion Reactor Technology, Del Mar, California (1993), pp. 3–6

Download references

Acknowledgements

This research was conducted during JAEA sabbatical program. This work was partly supported by JSPS KAKENHI Grant Number JP18K14159

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Ogawa.

Additional information

Communicated by Cedric Simenel

Appendix : Practical guide on the codes

Appendix : Practical guide on the codes

Since the interfaces developed in this study are built in to FIFRELIN, one can use them as a part of FIFRELIN. The performance of FIFRELIN including its new interfaces is confirmed in Linux and Windows subject to the installation of the GNU C++ compiler. PHITS can be used in the computers of Linux, Mac, or Windows. When a simulation by FIFRELIN is over, the intermediate files to be passed to PHITS are created in a folder “output/phitsSourceSpecification”. By importing the files in this folder to PHITS input files as source specifications, users can perform transport simulation of these particles. Similarly, the intermediate files for DCHAIN are created in the folder output/dchain. By feeding one of the files dchain.inp to DCHAIN batch file (Windows) or DCHAIN shell script file (Mac or Linux), the burn-up calculation is performed by DCHAIN. This interface is invoked by defining a FIFRELIN input parameter “Simulation/DelayedComponent” as “DCHAIN”, Users can define another FIFRELIN input parameter “Simulation/DelayedComponent/DchainDir” to specify the directory where the data files of DCHAIN are stored.

One can obtain FIFRELIN from OECD-NEA databank while PHITS including DCHAIN is distributed by JAEA PHITS office. They are available subject to the export control screening. Users can combine the distributed version of these codes.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Litaize, O., Mancusi, D. et al. Post fission time evolution calculation by FIFRELIN coupled with PHITS and DCHAIN. Eur. Phys. J. A 58, 153 (2022). https://doi.org/10.1140/epja/s10050-022-00800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00800-z

Navigation