Skip to main content

Advertisement

Log in

Revisiting the residual temperature distribution in prompt neutron emission in fission

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A new triangular form of the residual temperature distribution P(T), entering the prompt emission models in which the sequential emission is globally taken into account (e.g., the Los Alamos model of Madland and Nix with subsequent improvements and the Point-by-Point model), is proposed. A deterministic treatment of the successive emission of prompt neutrons, which is based on recursive equations of the residual temperatures, was developed. This modeling was validated by the good description of many and different experimental data of prompt emission (e.g., \(\overline{\nu}(A)\), \(\langle\nu\rangle\)(TKE), \(\langle\varepsilon\rangle (A)\), \(\langle\varepsilon\rangle\)(TKE), \(\overline{E}_{\gamma} (A)\), etc.) and the good agreement with the results of other prompt emission models. To see a possible systematic behaviour of P(T) as a function of energy and fissioning nucleus, the deterministic treatment of sequential emission was applied to 11 nuclei undergoing fission (spontaneously or induced by thermal and fast neutrons with energies up to the threshold of the second chance fission) for which reliable experimental fission fragment distributions Y(A, TKE) exist. The shapes of all P(T) distributions for the light and heavy fragment groups and for all fragments resulting from this modeling can be approximated with a triangular form. To make possible the use of this form into the prompt emission models with a global treatment of sequential emission, a connection between the average residual temperature \(\langle \mathrm{Tr} \rangle\) and the temperature of initial fragments \(\langle \mathrm{Ti} \rangle\) is needed. An important finding of this study concerns the ratio \(\langle \mathrm{Tr} \rangle / \langle \mathrm{Ti} \rangle\), which is \( \approx 0.6\) for all studied fissioning systems. This result allows to obtain a new triangular form of P(T) defined only as a function of initial temperature, which is applicable to any fissioning system at any energy, in the frame of prompt emission models with a global treatment of sequential emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Madland, J.R. Nix, Nucl. Sci. Eng. 81, 213 (1982)

    Article  Google Scholar 

  2. D.G. Madland, A.C. Kahler, Nucl. Phys. A 957, 289 (2017)

    Article  ADS  Google Scholar 

  3. R. Capote, Y.J. Chen, F.-J. Hambsch, N.V. Kornilov, J.P. Lestone, O. Litaize, B. Morillon, D. Neudecker, S. Oberstedt, T. Ohsawa, N. Otuka, V.G. Pronyaev, A. Saxena, O. Serot, O.A. Shcherbakov, N.C. Shu, D.L. Smith, P. Talou, A. Trkov, A.C. Tudora, R. Vogt, S. Vorobyev, Nucl. Data Sheets 131, 1 (2016)

    Article  ADS  Google Scholar 

  4. A. Tudora, F.-J. Hambsch, Eur. Phys. J. A. 53, 159 (2017)

    Article  ADS  Google Scholar 

  5. A. Al-Adili, F.-J. Hambsch, S. Pomp, S. Oberstedt, Phys. Rev. C 86, 054601 (2012)

    Article  ADS  Google Scholar 

  6. A. Göök, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)

    Article  ADS  Google Scholar 

  7. C. Wagemans, E. Allaert, A. Deruytter, R. Barthelemy, P. Schillebeeckx, Phys. Rev. C 30, 218 (1984)

    Article  ADS  Google Scholar 

  8. L. Demattè, Investigation of the fission fragments mass and energy distributions of ^236,238,240,242,244Pu(SF), PhD Thesis, Univ. of Ghent, coordinator C. Wagemans (1995-1996)

  9. F.-J. Hambsch, F. Vivès, P. Siegler, S. Oberstedt, Nucl. Phys. A 679, 3 (2000)

    Article  ADS  Google Scholar 

  10. F. Vivès, F.-J. Hambsch, H. Bax, S. Oberstedt, Nucl. Phys. A 662, 63 (2000)

    Article  ADS  Google Scholar 

  11. A. Al-Adili, F.-J. Hambsch, S. Pomp, S. Oberstedt, Phys. Rev. C 93, 034603 (2016)

    Article  ADS  Google Scholar 

  12. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    Article  ADS  Google Scholar 

  13. A. Tudora, F.-J. Hambsch, I. Visan, G. Giubega, Nucl. Phys. A 940, 242 (2015)

    Article  ADS  Google Scholar 

  14. C. Morariu, A. Tudora, F.-J. Hambsch, S. Oberstedt, C. Manailescu, J. Phys. G: Nucl. Part. Phys. 39, 055103 (2012)

    Article  ADS  Google Scholar 

  15. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org

    Article  ADS  Google Scholar 

  16. O. Iwamoto, J. Nucl. Sci. Technol. 45, 910 (2008)

    Article  Google Scholar 

  17. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org

    Article  ADS  Google Scholar 

  18. A.V. Ignatiuk, in IAEA-RIPL1-TECDOC-1034, Segment V (1998) Chapt. 5.1.4

  19. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  20. T. von Egidy, D. Bucurescu, Phys. Rev. C 80, 054310 (2009)

    Article  ADS  Google Scholar 

  21. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org

    Article  ADS  Google Scholar 

  22. J. Terrell, Phys. Rev. 113, 527 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Tudora, F.-J. Hambsch, S. Oberstedt, G. Giubega, I. Visan, Nucl. Sci. Eng. 181, 289 (2015)

    Article  Google Scholar 

  24. C. Manailescu, A. Tudora, F.-J. Hambsch, C. Morariu, S. Oberstedt, Nucl. Phys. A 867, 12 (2011)

    Article  ADS  Google Scholar 

  25. I. Visan, G. Giubega, A. Tudora, Rom. Rep. Phys. 67, 483 (2015)

    Google Scholar 

  26. K.-H. Schmidt, B. Jurado, C. Amoureux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016) GEF code version 2015/2.2, available online at http://www.cenbg.in2p3.fr/-GEF- and http://www.khs-erzhausen.de/GEF.html

    Article  ADS  Google Scholar 

  27. A. Göök, F.-J. Hambsch, S. Oberstedt, EPJ Web of Conferences 146, 04007 (2017)

    Article  Google Scholar 

  28. R. Mueller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984) numerical data from EXFOR (available online at https://www-nds.iaea.org

    Article  ADS  Google Scholar 

  29. A. Tudora, F.-J. Hambsch, V. Tobosaru, Phys. Rev. C 94, 044601 (2016)

    Article  ADS  Google Scholar 

  30. A. Tudora, F.-J. Hambsch, V. Tobosaru, EPJ Web of Conferences 146, 04004 (2017)

    Article  Google Scholar 

  31. C. Manailescu, PhD Thesis University of Bucharest and CEA-Cadarache, France, coordinators O. Serot and A. Tudora (2012)

  32. A. Göök, F.-J. Hambsch, S. Oberstedt, EPJ Web of Conferences 169, 00004 (2018)

    Article  Google Scholar 

  33. A. Tudora, F.-J. Hambsch, EPJ Web of Conferences 169, 00025 (2018)

    Article  Google Scholar 

  34. H. Nifenecker, C. Signarbieux, R. Babinet, J. Poitou, Neutron and gamma emission in fission, IAEA-SM-174/207 117 review paper (1973)

  35. A. Tudora, F.-J. Hambsch, G. Giubega, I. Visan, Nucl. Phys. A 933, 165 (2015)

    Article  ADS  Google Scholar 

  36. A. Tudora, F.-J. Hambsch, Ann. Nucl. Energy 37, 771 (2010)

    Article  Google Scholar 

  37. F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tudora.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudora, A., Hambsch, F.J. & Tobosaru, V. Revisiting the residual temperature distribution in prompt neutron emission in fission. Eur. Phys. J. A 54, 87 (2018). https://doi.org/10.1140/epja/i2018-12521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12521-7

Navigation