Skip to main content
Log in

Ratio of kaon-to-pion production cross-sections in BeBe collisions as a function of \(\sqrt{s}\)

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The inclusive spectra of pions and kaons produced in BeBe collisions as functions of their transverse momentum \(p_T\) at mid-rapidity are calculated within the approach, which is based on the assumption of the similarity of inclusive spectra of hadrons produced in AA collisions at their small transverse momenta in the mid-rapidity region. The essence of the modification of the self-similarity approach consists in the inclusion of a quark-gluon dynamics in hadron production in nucleon–nucleon interaction at mid-rapidity. We focus mainly on the ratio of cross-sections of \(K^\pm \) to \(\pi ^\pm \) mesons produced in BeBe collisions as a function of \(\sqrt{s}\). A fast rise of this ratio, when the initial energy increases starting from the kaon production threshold up to \(\sqrt{s}\simeq \) 20–30 GeV, is revealed together with its very slow increase up to LHC energies. The energy dependence of this ratio is due to the conservation laws of four-momenta and quantum numbers of the initial and produced hadrons and the Regge asymptotic behavior of the total and inelastic cross-sections of nucleon–nucleon collisions at large initial energies The satisfactory description of NA61/SHINE data on these ratios is demonstrated. Some predictions for RHIC and LHC on the \(K^+/\pi ^+\) and \(K^-/\pi ^-\) yield ratios as functions of \(\sqrt{s}\) in BeBe collisions as functions of \(\sqrt{s}\) are presented. The similarity of these observables to the ones for pp collisions at mid-rapidity and in the wide range of initial energies is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We have no own data and use the published data referred in our paper.]

References

  1. S.V. Afanasiev et al., (NA49 Collaboration) Phys. Rev. C 66 (2002)

  2. C. Alt et al., (NA49 Collaboration) Phys. Rev. C 77, 024903 (2008)

  3. M. Gazdzicki, M.I. Gorenstein, Acta Physika Polon. B 30, 2705 (1999)

  4. M. Gazdzicki, M.I. Gorenstein, P. Seyboth, J. Mod. Phys. E 23, 1430008 (2014)

    Article  ADS  Google Scholar 

  5. J. Cleymans et al., NA49 Collaboration. Phys. Lett. B 615, 50 (2005)

  6. A. Andronic, P. Braun-Muenzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

  7. A. Andronic, P. Braun-Muenzinger, J. Stachel, Phys. Lett. B 673, 142 (2013)

    Article  ADS  Google Scholar 

  8. K.A. Bugaev et al., Europhys. Lett. 104, 22002 (2013)

    Article  ADS  Google Scholar 

  9. R. Poberezhnyuk, M. Gazdzicki, M.I. Gorenstein, Acta Physika Polon. B 46, 1991 (2015)

  10. A. Palmese, W. Cassing, E. Seifert, P. Moreau, E.L. Bratkovskaya, Phys. Rev. C 94, 044912 (2016)

  11. D. Blaschke et al., Acta Phys. Polon. B Procc. Suppl 14, 485 (2021)

  12. D. Blaschke et al., Phys. Rev. D 96, 094008 (2017)

  13. K. Werner, F.-M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006)

  14. S. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    Article  ADS  Google Scholar 

  15. M. Blreicher et al., J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  16. Z.-W. Lin et al., Phys. Rev. C 72, 06490 (2005)

    Article  Google Scholar 

  17. Z.-W. Lin, Phys. Rev. C 90, 014904 (2014)

  18. B. Zhang et al., Phys. Rev. C 61, 067901 (2000)

  19. W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008)

  20. W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)

    Article  ADS  Google Scholar 

  21. J. Mohs, S. Ryu, H. Elfner, J. Phys. G 47, 065101 (2020)

  22. J. Weil et al., Phys. Rev. C 94, 054905 (2016)

  23. A. Acharya et al., (NA61/SHINE Collaboration) Eurs. Phys. J. C 81, 73 (2021)

  24. Wojciech Brylinski for the NA61/SHINE Collaborationes, EPJ Web Conf. Volume 258, 05007 (2022)

  25. A. Acharya et al., NA61/SHINE Collaboration. Eur. Phys. J. C 81, 397 (2021)

  26. A. Aduszkiewicz et al., (NA61/SHINE Collaboration) Phys. Rev. C 102, 011901(R) (2020)

  27. B. Tomasik, E.E. Kolomeitsev, Eur. Phys. J. C 49, 115 (2007)

    Article  ADS  Google Scholar 

  28. J.K. Nayak, S. Banik, j. Alam , Nucl.Phys. A 862-863, 286 (2011)

  29. G.I. Lykasov, A.I. Malakhov, A.A. Zaitsev, Eur. Phys. J. A 57, 78 (2021)

    Article  Google Scholar 

  30. A.M. Baldin, L.A. Didenko, Fortsch. Phys. 38, 261 (1990)

    Article  ADS  Google Scholar 

  31. A.M. Baldin, A.A. Baldin, Phys. Parti. Nucl. 29(3), 232, 065101 (1998)

  32. A.M. Baldin, A.I. Malakhov, A.N. Sissakian, Phys. Part. Nucl. 29(Suppl. 1), 4 (2001)

    Google Scholar 

  33. A.M. Baldin, A.I. Malakhov. JINR Rapid Communications, No.1(87)-98, pp.5-12 (1998)

  34. A.A. Baldin, JINR Rapid Comm. No. 4[78]-96 p.61-68

  35. E. Fermi, Phys. Rev. 92, 452 (1953)

  36. I..Ya.. Pomeranchuk, Izv. Dokl. Akad. Nauk Ser. Fiz. 78, 889 (1951)

  37. L.D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953)

    Google Scholar 

  38. R. Hagedorn, Supplemento al Nuovo Cimento 3, 147 (1965)

    Google Scholar 

  39. D.A. Artemenkov, G.I. Lykasov, A.I. Malakhov, Int. J. Mod. Phys. A 30, 1550127 (2015)

    Article  ADS  Google Scholar 

  40. G.I. Lykasov, A.I. Malakhov, Eur. Phys. J. A 54, 187 (2018)

    Article  ADS  Google Scholar 

  41. A.I. Malakhov, G.I. Lykasov, Eur. Phys. J. A 56, 114 (2020)

    Article  ADS  Google Scholar 

  42. A.M. Abdulov, H. Jung, A.V. Lipatov, G.I. Lykasov, M.A. Malyshev, Phys. Rev. D 98, 054010 (2018)

  43. V.A. Bednyakov, A.A. Grinyuk, G.I. Lykasov, M. Pogosyan, Int. J. Mod. Phys. A 27, 1250042 (2012)

    Article  ADS  Google Scholar 

  44. A.A. Grinyuk, G.I. Lykasov, A.V. Lipatov, N.P. Zotov, Phys. Rev. D 87, 074017 (2013)

  45. A.V. Lipatov, G.I. Lykasov, N.P. Zotov, Phys. Rev. D 89, 014001 (2014)

  46. N. Cartiglia. arXiv:1305.6131 [hep-ex]

  47. S.H. Stark, Eur. Phys. J. (Web Conf.) 141, 03007 (2017)

  48. E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  49. G. Wilk, Z. Wlodarczyk, Phys. Lett. 84, 2770 (2000)

    Article  Google Scholar 

  50. K.A. Bugaev, J. Phys .G. Nucl. Phys. 28, 1981 (2002)

  51. K.A. Bugaev, M. Gadzicki, M.I. Gorenstein, Phys. Lett. B 544, 127 (2002)

    Article  ADS  Google Scholar 

  52. J. Cleymans, G.I. Lykasov, A.S. Parvan et al., Phys. Lett. B 723, 351 (2013)

    Article  ADS  Google Scholar 

  53. J.L. Kley et al., E895 Collaboration. Phys. Rev. C 68, 054905 (2003)

  54. J. Cleymans, J. Struempfer, L. Tirko, Phys. Rev. C 78, 017901 (2008)

    Article  ADS  Google Scholar 

  55. N. Abgrall et al., NA61/SHINE Collaboration. Eur. Phys. J. C 74, 2794 (2014)

  56. K.A. Ter-Martirosyan, Sov. J. Nucl. Phys. 44, 817 (1986)

    Google Scholar 

  57. A. Adiszkiewicz et al., NA61/SHINE Collaboration. Phys. Rev. C 102(1), 011901 (2020)

  58. B.I. Abelev et al., (STAR Collaboration) Phys. Rev. C 79, 034909 (2009)

  59. A. Adare et al., (PHENIX Collaboration) Phys. Rev. C 83, 064903 (2011)

  60. K. Aamodt et al., (ALICE Collaboration) Eur. Phys. J. C 71, 1655 (2011)

  61. J. Adam et al., (ALICE Collaboration) Eur. Phys. J. C 75, 226 (2015)

  62. A. Acharya et al., NA61/SHINE Collaboration. Eur. Phys. J. C 80, 961 (2020)

Download references

Acknowledgements

We are very grateful to K.A. Bugaev, M. Gumberidze, M. Gazdzicki, R. Holzmann, S. Pulawski, G.Pontecorvo for extremely helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lykasov.

Additional information

Communicated by Che-Ming Ko.

Appendix

Appendix

The parameterizations of \(\sigma _{tot},\sigma _{SD}\) and \(\sigma _{el}\) have the following forms [46, 47]

$$\begin{aligned} \sigma _{tot} = (21.7(s/s_0)^{0.0808} + 56.08(s/s_0)^{-0.4525}) \mathrm{mb};\\ \sigma _{el} = (12.7 - 1.75\text{ ln }(s/s_0) + 0.14\text{ ln}^2(s/s_0)) \mathrm{mb};\\ \sigma _{SD} = (4.2 + \text{ ln }(\sqrt{s/s_0})) \mathrm{mb}. \end{aligned}$$

In Fig. 6 the \(p_T\)-spectra of pions and kaons, produced in the mid-rapidity of BeBe collisions within the initial momentum range of (30–150)A GeV/c, fitted by the NA61 data, are presented. The black dashed line corresponds to the quark contribution, the blue dash-dotted curve is the gluon contribution and the red solid line is the sum of quark and nonperturbative gluon contributions. The parameters \(A_q,A_g\) and \(C_q,C_g\) were found from a fit of NA61/SHINE data and are presented in Table 1.

As it is shown in [39,40,41], the form of inclusive pion spectra versus \(p_T\) at mid-rapidity given by Eqs. (6–8) describes satisfactorily data in a wide range of \(\sqrt{s}\) at \(p_T<\) 2-3 GeV/c. Moreover, as it is shown in [42,43,44,45], the contribution of gluons to the pion spectrum is related to the gluon distribution at low \(Q^2=\) 1–2 (GeV/c)\(^2\), the use of which results in a satisfactory description of data on hard pp processes at LHC energies and of proton structure functions at low x. Therefore, we use Eqs. (47) for the description of data on pion \(p_T\)-spectra in BeBe collisions, only improving the fit of data.

As for \(K^\pm \) production in BeBe collisions at not large initial energies we take into account the additional contribution due to the one Reggeon exchange diagram, which has a \(\sqrt{s_{th}/s}\) dependence. It leads to modification of parameter \(A_q\) in the following form \(A_q(1+\sqrt{s_{th}/s})\), which can be approximated by \(A_q\text{ exp }(\sqrt{s_{th}/s})\). This correction vanishes at RHIC and LHC energies, however, it allows us to describe data at \(\sqrt{s}<\) 10 GeV satisfactorily.

Parameters \(A_q\) for \(\pi \), \(K^+\) and \(K^-\) meson production were found from the fit of NA61 data [23, 62] at initial energies \(P_{in}=\) (30–150)A GeV/c. Parameters \(A_g\) for \(\pi \), \(K^+\) and \(K^-\) meson production were found from the fit of NA61 data at \(P_{in}=\) 150A GeV/c. Other parameters \(C_q\) and \(C_g\) were taken from fits of NA61 data in pp collisions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lykasov, G.I., Malakhov, A.I. & Zaitsev, A.A. Ratio of kaon-to-pion production cross-sections in BeBe collisions as a function of \(\sqrt{s}\). Eur. Phys. J. A 58, 112 (2022). https://doi.org/10.1140/epja/s10050-022-00773-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00773-z

Navigation