Skip to main content
Log in

Physical symmetries and gauge choices in the Landau problem

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Due to a special nature of the Landau problem, in which the magnetic field is uniformly spreading over the whole two-dimensional plane, there necessarily exist three conserved quantities, i.e. two conserved momenta and one conserved orbital angular momentum for the electron, independently of the choice of the gauge potential. Accordingly, the quantum eigen-functions of the Landau problem can be obtained by diagonalizing the Landau Hamiltonian together with one of the above three conserved operators with the result that the quantum mechanical eigen-functions of the Landau problem can be written down for arbitrary gauge potential. The purpose of the present paper is to clarify the meaning of gauge choice in the Landau problem based on this gauge-potential-independent formulation, with a particular intention of unraveling the physical significance of the concept of gauge-invariant-extension of the canonical orbital angular momentum advocated in recent literature on the nucleon spin decomposition problem. At the end, our analysis is shown to disclose a physically vacuous side face of the gauge symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the outcomes of the investigation are given in the main text containing two tables as well as in three appendices.].

References

  1. L.D. Landau, Diamagnetisms der Metalle. Z. Phys. 64, 629–637 (1930)

    Article  ADS  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics, 3rd edn. (Pergamon, New York, 1997)

    Google Scholar 

  3. L.E. Vallentine, Quantum Mechanics : A Modern Development (World Scientific Publishing Co. Pte. Ltd, Singapore, 1998)

    Book  Google Scholar 

  4. I.D. Vagner, V.M. Gvozdikov, P. Wyder, Quantum mechanics of electrons in strong magnetic field. HIT J. Sci. Eng. 3(1), 5–55 (2006)

    Google Scholar 

  5. M.O. Goerbig, Quantum Hall Effects. arXiv:0909.1998 (2009)

  6. D. Tong, Quantum Hall Effects. arXiv:1606.06687 (2016)

  7. H. Murayama, Landau levels. https://hitoshi.berkley.edu/221a/landau.pdf

  8. D. Yoshioka, The Quantum Hall Effects (Springer, Berlin, 2002), pp. 20–23

    Book  Google Scholar 

  9. G. Konstantinou, K. Moulopoulos, Generators of dynamical symmetries and the correct gauge transformation in the Landau level problem : use of pseudomomentum and pseudo-angular momentum. Eur. J. Phys. 37, 065401/1–15 (2016)

    Article  Google Scholar 

  10. G. Konstantinou, K. Moulopoulos, The “forgotten’’ pseudomomenta and gauge changes in generalized Landau level problems : spatially nonuniform magnetic and temporally varying electric fields. Int. J. Theor. Phys. 56, 1484–1503 (2017)

    Article  MathSciNet  Google Scholar 

  11. M. Wakamatsu, Y. Kitadono, P.M. Zhang, The issue of gauge choice in the Landau problem and the physics of canonical and mechanical orbital angular momentum. Ann. Phys. 392, 287–322 (2018)

    Article  ADS  Google Scholar 

  12. B.S. DeWitt, Quantum theory without electromagnetic potentials. Phys. Rev. 125, 2189–2191 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  13. X.S. Chen, X.F. Lü, W.M. Sun, F. Wang, T. Goldman, Spin and orbital angular momentum in gauge theories: nucleon spin structure and multipole radiation revisited. Phys. Rev. Lett. 100, 232002/1–4 (2008)

    ADS  Google Scholar 

  14. X.S. Chen, W.M. Sun, X.F. Lü, F. Wang, T. Goldman, Do gluons carry half of the nucleon momentum? Phys. Rev. Lett. 103, 062001/1–4 (2009)

    ADS  Google Scholar 

  15. Y. Hatta, Gluon polarization in the nucleon demystified Phys. Rev. D 84, 04701(R)/1–4 (2011)

    Article  Google Scholar 

  16. C. Lorcé, Gauge-covariant canonical formalism revisited with application to the proton spin decomposition. Phys. Rev. D 88, 044037/1–8 (2013)

  17. E. Leader, C. Lorcé, The angular momentum controversy : What’s it all about and does it matter? Phys. Rep. 541, 163–248 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Wakamatsu, Is gauge-invariant complete decomposition of the nucleon spin possible? Int. J. Mod. Phys. A 29, 1430012/1–52 (2014)

    Article  ADS  Google Scholar 

  19. T. Haugset, JAa. Ruud, F. Ravndal, Gauge invariance of Landau levels. Physica Scripta 47, 715–719 (1993)

  20. J. Govaerts, M.N. Hounkonnou, H.V. Mweene, Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane. J. Phys. A: Math. Theor. 42, 485209/1–19 (2009)

    MathSciNet  MATH  Google Scholar 

  21. M. Wakamatsu, Y. Kitadono, L. Zou, P. Zhang, The physics of helical electron beam in a uniform magnetic field as a testing ground of gauge principle. Phys. Lett. A 384, 126415/1–7 (2020)

    Article  MathSciNet  Google Scholar 

  22. M. Wakamatsu, Y. Kitadono, L. Zou, P. Zhang, Revisiting the compatibility problem between the gauge principle and the observability of the canonical orbital angular momentum in the Landau problem. Ann. Phys. 434, 168647/1–26 (2021)

    Article  MathSciNet  Google Scholar 

  23. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms-Introduction to Quantum Electrodynamics (Wiley, Hoboken, 1989)

    Google Scholar 

  24. A. Zangwill, Electrodynamics (Cambridge University Press, United Kingdam, 2013)

    MATH  Google Scholar 

  25. R.L. Jaffe, A. Manohar, The \(g_1\) problem: deep inelastic electron scattering and the spin of the nucleon. Nucl. Phys. B 337, 509–546 (1990)

    Article  ADS  Google Scholar 

  26. X. Ji, Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610–613 (1997)

    Article  ADS  Google Scholar 

  27. M. Wakamatsu, Gauge-invariant decomposition of nucleon spin. Phys. Rev. D 81, 114010/1–9 (2010)

    Article  ADS  Google Scholar 

  28. M. Wakamatsu, Gauge- and frame-independent decomposition of nucleon spin. Phys. Rev. D 83, 014012/1–16 (2011)

    Article  ADS  Google Scholar 

  29. A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, USA, 2010)

    MATH  Google Scholar 

  30. M. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, United Kingdam, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Wakamatsu.

Additional information

Communicated by Reinhard Alkofer.

Appendices

Appendix A Calculation of the matrix elements in the \(\vert n, k_x \rangle \)-basis

By using the explicit form of \(\Psi ^{(L_1)}_{n, k_x} (x, y)\) given by (48), it can readily be shown that

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{can}_x \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle= & {} \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,- \,i \,\frac{\partial }{\partial x} \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \ \nonumber \\= & {} \ k_x \,\delta (k^\prime _x - k_x) . \end{aligned}$$
(A1)

Furthermore, since \({\hat{p}}^{cons}_x ({\varvec{A}})\) reduces to the canonical momentum \({\hat{p}}^{can}_x\) in the \(L_1\)-gauge, we naturally have

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{cons}_x ({\varvec{A}}^{(L_1)}) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle= & {} \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{can}_x \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \ \nonumber \\= & {} \ k_x \,\delta (k^\prime _x - k_x) . \end{aligned}$$
(A2)

Next, the matrix element of the mechanical momentum operator becomes

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{mech}_x ({\varvec{A}}^{(L_1)}) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{can}_x \ + \ e \,(\,- \,B \,y) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = k_x \,\delta (k^\prime _x - k_x) \, - \, e \,B \, \delta (k^\prime _x - k_x) \,\langle Y_n \,\vert \,y \,\vert \,Y_n \rangle . \end{aligned}$$
(A3)

Here, the matrix element \(\langle Y_n \,\vert \,y \,\vert \,Y_n \rangle \) can be evaluated as follows :

$$\begin{aligned} \langle Y_n \,\vert \,y \,\vert \, Y_n \rangle= & {} \ N^2_n \,\int _{- \,\infty }^\infty \,d y \,e^{\,- \,\frac{(y - y_0)^2}{l^2_B}} \,\nonumber \\\times & {} H_n \left( \frac{y - y_0}{l_B} \right) \,y \, H_n \left( \frac{y - y_0}{l_B} \right) \nonumber \\= & {} \ y_0 \ = \ \frac{k_x}{e \,B} . \end{aligned}$$
(A4)

We therefore find a remarkable relation as

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{mech}_x ({\varvec{A}}^{(L_1)}) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle= & {} k_x \,\delta (k^\prime _x - k_x) \ \nonumber \\- & {} \ e \,B \,\frac{k_x}{e \,B} \, \delta (k^\prime _x - k_x) \nonumber \\= & {} 0, \end{aligned}$$
(A5)

the physical significance of which is explained in the main text.

Next we turn to the matrix elements between the eigen-states \(\vert \,\Psi ^{(S)}_{n, k_x} \rangle \). With the use of the relation \(\vert \,\Psi ^{(S)}_{n, k_x} \rangle = U^\dagger \,\vert \,\Psi ^{(L_1)} \rangle \), we obtain

$$\begin{aligned} \langle \Psi ^{(S)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{can}_x \,\vert \,\Psi ^{(S)}_{n, k_x} \rangle \ = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,U \,{\hat{p}}^{can}_x \,U^\dagger \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle . \end{aligned}$$
(A6)

Noting that

$$\begin{aligned} U \,{\hat{p}}^{can}_x \,U^\dagger \ = \ {\hat{p}}^{can}_x \ - \ \frac{1}{2} \,e \,B \,y , \end{aligned}$$
(A7)

we therefore find that

$$\begin{aligned}&\langle \Psi ^{(S)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{can}_x \,\vert \,\Psi ^{(S)}_{n, k_x} \rangle \ = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{p}}^{can}_x \ - \ \frac{1}{2} \,e \,B \,y \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = k_x \,\delta (k^\prime _x - k_x) \ - \ \frac{1}{2} \,e \,B \,\,\frac{k_x}{e \,B} \, \delta (k^\prime _x - k_x) \ \nonumber \\&\quad = \ \frac{1}{2} \,k_x \,\delta (k^\prime _x - k_x) . \ \ \ \ \ \end{aligned}$$
(A8)

Similarly, we have

$$\begin{aligned}&\langle \Psi ^{(S)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{cons}_x ({\varvec{A}}^{(S)}) \, \vert \,\Psi ^{(S)}_{n, k_x} \rangle \ \nonumber \\&\quad = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,U \,{\hat{p}}^{cons}_x ({\varvec{A}}^{(S)}) \,U^\dagger \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle . \end{aligned}$$
(A9)

Taking care of the covariant gauge-transformation property of \({\hat{p}}^{cons}_x\), which means the relation \(U \,{\hat{p}}^{cons}_x ({\varvec{A}}^{(S)}) \,U^\dagger \ = \ {\hat{p}}^{cons}_x ({\varvec{A}}^{(L_1)})\), we therefore find that

$$\begin{aligned} \langle \Psi ^{(S)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{cons}_x ({\varvec{A}}^{(S)}) \, \vert \,\Psi ^{(S)}_{n, k_x} \rangle= & {} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{cons}_x ({\varvec{A}}^{(L_1)}) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\= & {} k_x \,\delta (k^\prime _x - k_x) . \end{aligned}$$
(A10)

For the matrix element of the mechanical momentum operator, we obtain

$$\begin{aligned}&\langle \Psi ^{(S)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{mech}_x ({\varvec{A}}^{(S)}) \, \vert \,\Psi ^{(S)}_{n, k_x} \rangle \ \nonumber \\&\quad = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,U \,{\hat{p}}^{mech}_x ({\varvec{A}}^{(S)}) \, U^\dagger \vert \,\Psi ^{(S)}_{n, k_x} \rangle \nonumber \\&\quad = \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{mech}_x ({\varvec{A}}^{(L_1)}) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{p}}^{can}_x \ - \ e \,B \,y \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = \ k_x \,\delta (k^\prime _x - k_x) \ - \ e \,B \,\,\frac{1}{e \,B} \,\, k_x \,\delta (k^\prime _x - k_x) \ = \ 0.\nonumber \\ \end{aligned}$$
(A11)

Here, we have used the fact that \({\hat{p}}^{mech}_x\) also transforms covariantly under a gauge transformation.

Next, we evaluate the matrix elements of the three OAM operators in the two \(\vert \,n, k_x \rangle \)-basis functions, \(\Psi ^{(L_1)}_{n, k_x} (x,y)\) and \(\Psi ^{(S)}_{n, k_x} (x,y)\). Although it may sound strange, this has never been done before. The reason is probably because the symmetric gauge eigen-states \(\vert \,\Psi ^{(S)}_{n,m} \rangle \) are the most natural and convenient basis to deal with the OAM operators, and one seldom paid attention to calculating the expectation values of the OAM operators between the eigen-functions \(\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) in the 1st Landau gauge.

With the use of the definitions of \({\hat{L}}^{cons}_z ({\varvec{A}})\) and \({\hat{L}}^{mech}_z ({\varvec{A}})\), we obtain

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{cons}_z ({\varvec{A}}^{(L_1)}) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \ = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\qquad \ - \ \frac{1}{2} \,e \,B \, \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \, \nonumber \\&\qquad + \, \frac{1}{2} \,e \,B \, \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle , \ \ \ \ \ \end{aligned}$$
(A12)
$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{mech}_z ({\varvec{A}}^{(L_1)}) \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle = \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \, \nonumber \\&\qquad + \, e \,B \, \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle , \end{aligned}$$
(A13)

Similarly, using the relation \(\vert \,\Psi ^{(S)}_{n, k_x} \rangle = U^\dagger \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) together with the gauge-covariant transformation properties of \({\hat{L}}^{cons}_z ({\varvec{A}})\) and \({\hat{L}}^{mech}_z ({\varvec{A}})\), we obtain

$$\begin{aligned}&\langle \Psi ^{(S)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{cons}_z ({\varvec{A}}^{(S)}) \, \vert \,\Psi ^{(S)}_{n, k_x} \rangle \ = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad \ - \ \frac{1}{2} \,e \,B \, \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \, + \, \frac{1}{2} \,e \,B \, \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle , \nonumber \\ \end{aligned}$$
(A14)
$$\begin{aligned}&\langle \Psi ^{(S)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{mech}_z ({\varvec{A}}^{(S)}) \, \vert \,\Psi ^{(S)}_{n, k_x} \rangle \nonumber \\&\quad \ = \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \, + \, e \,B \, \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle .\nonumber \\ \end{aligned}$$
(A15)

Thus, for evaluating the matrix elements of the three OAM operators in the \(\vert \,n, k_x \rangle \)-basis, we have only to know the following three matrix elements :

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle , \ \ \ \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle , \nonumber \\&\quad \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle . \end{aligned}$$
(A16)

As one can easily verify, the two of these matrix elements, i.e. \(\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) and \(\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) can be calculated without much difficulty. On the other hand, the calculation of the second matrix element \(\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x^2 \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) needs some care owing to the plane-wave nature of the eigen-states \(\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) along the x-direction. (Note that this cumbersome term appears in the matrix elements of \({\hat{L}}^{can}_z\) and \({\hat{L}}^{cons}_z ({\varvec{A}})\), but it does not in those of \({\hat{L}}^{mech}_z ({\varvec{A}})\).) First, note that the eigen-functions \(\Psi ^{(L_1)}_{n, k_x} (x,y)\) are normalized as

$$\begin{aligned}&\int \,d x \,d y \,\Psi ^{(L_1) *}_{n, k^\prime _x} (x,y) \,\Psi ^{(L_1)}_{n, k_x} (x,y) \nonumber \\&\quad = \frac{1}{2 \,\pi } \,\int _{-\,\infty }^\infty \,d x \, e^{\,- \, i \,(k^\prime _x - k_x) \,x} \, \nonumber \\&\quad \times \int _{- \,\infty }^\infty \,d y \,[Y_n (y)]^2 \ = \ \delta (k^\prime _x - k_x) . \end{aligned}$$
(A17)

Here, we have used the fact that \(Y_n (y)\) is normalized as \(\int _{- \,\infty }^\infty \,d y \,[Y_n (y)]^2 = 1\). For later convenience, we introduce the dimensionless wave function \(\psi _n (\xi )\) by

$$\begin{aligned} Y_n (y) \ \equiv \ \frac{1}{\sqrt{l_B}} \,\,\psi _n (\xi ) , \end{aligned}$$
(A18)

with \((y - y_0) \,/\,l_B = \xi \). The normalization of \(\psi (\xi )\) is then given by

$$\begin{aligned} \int _{- \,\infty }^\infty \, d \xi \,[\psi _n (\xi )]^2 \ = \ 1. \end{aligned}$$
(A19)

We begin with the calculation of the matrix element of the canonical OAM operator :

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \,\vert \, \Psi ^{(L_1)}_{n, k_x} \rangle \ = \ - \, i \,\,\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x \,\frac{\partial }{\partial y} \ - \ y \,\frac{\partial }{\partial x} \,\vert \, \Psi ^{(L_1)}_{n, k_x} \rangle . \nonumber \\ \end{aligned}$$
(A20)

Let us first consider the first part in the r.h.s. Using the variables \(\xi = (y - l^2_B \,k_x) \,/\,l_B\) and \(\xi ^\prime = (y - l^2_B \,k^\prime _x) \,/\,l_B\) together with the relation \(\frac{\partial }{\partial y} = \frac{1}{l_B} \,\frac{\partial }{\partial \xi }\), we obtain

$$\begin{aligned}&- \,i \,\,\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x \,\frac{\partial }{\partial y} \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = - \,i \,\left\{ \frac{1}{2 \,\pi } \,\int _{- \,\infty }^\infty \,d x \, x \,e^{\,- \,i \,(k^\prime _x - k_x) \,x} \,\right\} \nonumber \\&\quad \times \frac{1}{l_B} \,\, \int _{- \,\infty }^\infty \,d \xi \,\psi _n (\xi ^\prime ) \, \frac{\partial }{\partial \xi } \,\psi _n (\xi ) \ \ \ \ \ \nonumber \\&\quad = \ \left\{ - \,\frac{\partial }{\partial k_x} \,\delta (k^\prime _x - k_x) \,\right\} \, \frac{1}{l_B} \,\int _{- \,\infty }^\infty \, d \xi \,\psi _n (\xi ^\prime ) \, \frac{\partial }{\partial \xi } \,\psi _n (\xi ).\nonumber \\ \end{aligned}$$
(A21)

Here, we can make use of the identity of Dirac’s delta function:

$$\begin{aligned} f (k) \,\delta ^\prime (k) \ = \ - \,f^\prime (0) \,\delta (k), \end{aligned}$$
(A22)

where f(k) is an any functions of k, which satisfies the condition \(f (0) = 0\). This gives

$$\begin{aligned}&- \,i \,\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x \,\frac{\partial }{\partial y} \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = \left\{ \frac{\partial }{\partial k_x} \,\frac{1}{l_B} \, \int _{- \,\infty }^\infty \,d \xi \,\psi _n (\xi ^\prime ) \,\frac{\partial }{\partial \xi } \, \psi _n (\xi ) \right\} _{k^\prime _x = k_x} \times \,\,\delta (k^\prime _x - k_x) ,\nonumber \\ \end{aligned}$$
(A23)

if the following equality holds

$$\begin{aligned} \int _{- \,\infty }^\infty \,d \xi \left. \psi _n (\xi ^\prime ) \,\frac{\partial }{\partial \xi } \,\psi _n (\xi ) \, \right| _{\xi ^\prime = \xi } \ = \ 0, \end{aligned}$$
(A24)

which can be easily verified to hold. We therefore find that

$$\begin{aligned}&- \,i \,\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,x \,\frac{\partial }{\partial y} \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = \delta (k^\prime _x - k_x) \,\left( - \,l_B \,\frac{\partial }{\partial \xi } \right) \, \frac{1}{l_B} \,\int _{- \,\infty }^\infty \,d \xi \,\,\left. \psi _n (\xi ^\prime ) \,\frac{\partial }{\partial \xi } \,\psi (\xi ) \, \right| _{\xi ^\prime = \xi } \nonumber \\&\quad = - \,\delta (k^\prime _x - k_x) \,\int _{- \,\infty }^\infty \, \psi (\xi ) \,\frac{\partial ^2}{\partial \xi ^2} \,\psi _n (\xi )\nonumber \\&\quad = \frac{1}{2} \,( 2 \,n + 1) \,\delta (k^\prime _x - k_x) . \end{aligned}$$
(A25)

The second half part of (A20) can be evaluated as

$$\begin{aligned}&i \,\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,y \,\frac{\partial }{\partial x} \, \vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \ = \ - \,k_x \,\delta (k^\prime _x - k_x) \nonumber \\&\quad \times \,\int _{- \,\infty }^\infty \, d y \,Y_n (y) \,y \,Y_n (y) \nonumber \\&\quad = \ - \,k_x \,\delta (k^\prime _x - k_x) \,y_0 \ = \ - \,\frac{k_x^2}{e \,B} \,\delta (k^\prime _x - k_x) . \end{aligned}$$
(A26)

Combining the two terms, we therefore find that

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, {\hat{L}}^{can}_z \,\vert \, \Psi ^{(L_1)}_{n, k_x} \rangle \ = \ \left\{ \, n \, + \, \frac{1}{2} \ - \ \frac{k^2_x}{e \,B} \,\right\} \, \delta (k^\prime _x - k_x) .\nonumber \\ \end{aligned}$$
(A27)

Since the calculation of the matrix element \(\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) is straightforward, here we show only the answer given as

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, y^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle = \frac{1}{e \,B} \,\left\{ \, n + \frac{1}{2} + \frac{k^2_x}{e \,B} \right\} \, \delta (k^\prime _x - k_x) .\nonumber \\ \end{aligned}$$
(A28)

Finally, as already pointed out, the calculation of the matrix element \(\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \, x^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \) is a little technical, so that here we show only the final answer by leaving the explicit derivation to another Appendix B. The answer reads as

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,x^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle= & {} \ \frac{1}{e \,B} \,\left( n + \frac{1}{2} \right) \,\delta (k^\prime _x - k_x) \ \nonumber \\&\quad - \ \delta ^{\prime \prime } (k^\prime _x - k_x) , \end{aligned}$$
(A29)

where \(\delta ^{\prime \prime } (k)\) represents the second derivative of \(\delta (k)\). In this way, we now have all the necessary matrix elements as follows :

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,{\hat{L}}^{can}_z \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle= & {} \ \left\{ \, n \, + \,\frac{1}{2} \,- \,\frac{k^2_x}{e \,B} \right\} \, \delta (k^\prime _x - k_x),\nonumber \\ \end{aligned}$$
(A30)
$$\begin{aligned} e \,B \,\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,y^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle= & {} \ \left\{ \, n \, + \, \frac{1}{2} \,+ \,\frac{k^2_x}{e \,B} \right\} \, \delta (k^\prime _x - k_x),\nonumber \\ \end{aligned}$$
(A31)
$$\begin{aligned} e \,B \,\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,x^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle= & {} \ \left( n \, + \,\frac{1}{2} \right) \,\delta (k^\prime _x - k_x) \ \nonumber \\&\quad - \ e \,B \,\delta ^{\prime \prime } (k^\prime _x - k_x) . \end{aligned}$$
(A32)

Using these answers, we can now readily write down the final answers for the matrix elements of the three OAM operators in the \(\vert \,n, k_x \rangle \)-basis. The answers are summarized in Table 1 in the main text together with the matrix elements of the three momentum operators.

Appendix B Calculation of the matrix elements \(\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,x^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \)

The calculation starts with

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,x^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = \ \left\{ \frac{1}{2 \,\pi } \,\int _{- \,\infty }^\infty \,d x \, e^{\,- \,i \,(k^\prime _x - k_x) \,x} \,x^2 \right\} \, \nonumber \\&\qquad \times \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \,Y_n (y - y_0) \nonumber \\&\quad = \ \left\{ - \,\frac{\partial ^2}{\partial k^2_x} \, \delta (k^\prime _x - k_x) \right\} \, \nonumber \\&\qquad \times \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \,Y_n (y - y_0) . \end{aligned}$$
(B33)

With use of the following identity of Dirac’s delta function,

$$\begin{aligned} \delta ^{\prime \prime } (k) \,f (k) \ = \ f^{\prime \prime } (0) \,\delta (k) - 2 \,f^\prime (0) \,\delta ^\prime (k) + f (0) \,\delta ^{\prime \prime } (k) ,\nonumber \\ \end{aligned}$$
(B34)

we obtain

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,x^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \nonumber \\&\quad = \ - \,\left\{ \frac{\partial ^2}{\partial k^2_x} \, \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \, Y_n (y - y_0) \right\} _{k^\prime _x = k_x} \nonumber \\&\qquad \times \,\,\delta (k^\prime _x - k_x) \nonumber \\&\qquad + \ 2 \, \left\{ \frac{\partial }{\partial k_x} \, \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \, Y_n (y - y_0) \right\} _{k^\prime _x = k_x} \nonumber \\&\qquad \times \delta ^\prime (k^\prime _x - k_x) \nonumber \\&\qquad - \ \left\{ \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \, Y_n (y - y_0) \right\} _{k^\prime _x = k_x} \nonumber \\&\qquad \times \,\,\delta ^{\prime \prime } (k^\prime _x - k_x) \end{aligned}$$
(B35)

It is not so difficult to verify the equalities

$$\begin{aligned} \left\{ \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \, Y_n (y - y_0) \right\} _{k^\prime _x = k_x} \ = \ 1, \end{aligned}$$
(B36)

and

$$\begin{aligned} \left\{ \frac{\partial }{\partial k_x} \, \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \, Y_n (y - y_0) \right\} _{k^\prime _x = k_x} \ = \ 0 , \end{aligned}$$
(B37)

so that we show below how to evaluate

$$\begin{aligned}&\left\{ \frac{\partial ^2}{\partial k^2_x} \!\! \int _{- \,\infty }^\infty \!\! d y \,Y_n (y - y^\prime _0) \, Y_n (y - y_0) \right\} _{k^\prime _x = k_x} \nonumber \\&\quad = l^2_B \,\int _{- \,\infty }^\infty d \xi \,\psi _n (\xi ) \, \frac{\partial ^2}{\partial \xi ^2} \,\psi _n (\xi ). \end{aligned}$$
(B38)

Using the familiar recursion formulas for the harmonic oscillator wave functions

$$\begin{aligned} \frac{\partial }{\partial \xi } \,\psi _n (\xi )= & {} \ \sqrt{\frac{n}{2}} \,\psi _{n-1} (\xi ) \ - \ \sqrt{\frac{n+1}{2}} \,\psi _{n+1} (\xi ), \end{aligned}$$
(B39)
$$\begin{aligned} \frac{\partial ^2}{\partial \xi ^2} \,\psi _n (\xi )= & {} \ - \,\frac{2 \,n + 1}{2} \,\psi _n (\xi ) \nonumber \\&+ \ \sqrt{\frac{n \,(n - 1)}{2}} \,\psi _{n-2} (\xi ) \nonumber \\&+ \ \sqrt{\frac{(n+1) \,(n+2)}{2}} \,\psi _{n+2} (\xi ) , \ \ \ \ \ \end{aligned}$$
(B40)

we find that

$$\begin{aligned} \int _{- \,\infty }^\infty \,d \xi \,\psi _n (\xi ) \,\frac{\partial ^2}{\partial \xi ^2} \, \psi _n (\xi ) \ = \ - \,\frac{1}{2} \,(2 \,n + 1) , \end{aligned}$$
(B41)

which in turn gives

$$\begin{aligned}&\left\{ \frac{\partial ^2}{\partial k^2_x} \, \int _{- \,\infty }^\infty \,d y \,Y_n (y - y^\prime _0) \, Y_n (y - y_0) \right\} _{k^\prime _x = k_x} \nonumber \\&\quad \ = \ - \,l^2_B \,\,\frac{1}{2} \,(2 \,n + 1) . \end{aligned}$$
(B42)

Collecting the above formulas, we finally get

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n, k^\prime _x} \,\vert \,x^2 \,\vert \,\Psi ^{(L_1)}_{n, k_x} \rangle \ = \ \frac{1}{e \,B} \,\left( n + \frac{1}{2} \right) \,\delta (k^\prime _x - k_x)\nonumber \\&\quad \ - \ \delta ^{\prime \prime } (k^\prime _x - k_x) . \end{aligned}$$
(B43)

which reproduces (A29) in the Appendix A.

Appendix C Calculation of the matrix elements in the \(\vert n, m \rangle \)-basis

Let us start with the calculation of the momentum operators. Using (107), we obtain

$$\begin{aligned}&\langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,p^{cons}_x ({\varvec{A}}^{(S)}) \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\&\quad = - \,i \,\sqrt{\frac{e \,B}{2}} \,\,{}^A \langle n \,\vert \,{}^B \langle n - m^\prime \,\vert \, b - b^\dagger \,\vert \,n \rangle ^A \,\vert \,n - m \rangle ^B \nonumber \\&\quad = - \,i \,\sqrt{\frac{e \,B}{2}} \left\{ \sqrt{n - m} \,\delta _{m^\prime , m+1} \, - \, \sqrt{n - m + 1} \,\delta _{m^\prime , m-1} \right\} .\nonumber \\ \end{aligned}$$
(C44)

On the other hand, we get

$$\begin{aligned}&\langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,p^{mech}_x ({\varvec{A}}^{(S)}) \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\&\quad = - \,i \,\sqrt{\frac{e \,B}{2}} \,\,{}^A \langle n \,\vert \,{}^B \langle n - m^\prime \,\vert \, a - a^\dagger \,\vert \,n \rangle ^A \,\vert \,n - m \rangle ^B \ = \ 0.\nonumber \\ \end{aligned}$$
(C45)

The matrix element of the canonical momentum operator can be calculated by using the relation \(p^{can}_x = \frac{1}{2} \,\left( p^{mech}_x ({\varvec{A}}^{(S)}) + p^{cons}_x ({\varvec{A}}^{(S)}) \right) \), which gives

$$\begin{aligned}&\langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,p^{can}_x \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\&\quad = - \,i \,\,\frac{1}{2} \,\sqrt{\frac{e \,B}{2}} \,\left\{ \sqrt{n - m} \,\delta _{m^\prime , m+1} \ - \ \sqrt{n - m + 1} \,\delta _{m^\prime , m-1} \right\} .\nonumber \\ \end{aligned}$$
(C46)

The matrix elements of the momentum operators between the eigen-states \(\vert \,\Psi ^{(L_1)}_{n,m} \rangle \) are obtained by using the relation \(\vert \,\Psi ^{(L_1)}_{n,m} \rangle = U \,\vert \,\Psi ^{(S)}_{n,m} \rangle \). For the canonical momentum operator, we get

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \, p^{can}_x \,\vert \,\Psi ^{(L_1)}_{n,m} \rangle= & {} \ \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \, U^\dagger \,p^{can}_x \,U \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\= & {} \ \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \, p^{can}_x \ + \ \frac{1}{2} \,e \,B \,y \,\vert \,\Psi ^{(S)}_{n,m} \rangle . \nonumber \\ \end{aligned}$$
(C47)

The second part can be evaluated by using

$$\begin{aligned} \frac{1}{2} \,e \,B \,y \ = \ i \,\,\frac{1}{2} \,\sqrt{\frac{e \,B}{2}} \,\, ( a \ - \ b \ - \ a^\dagger \ + \ b^\dagger ) , \end{aligned}$$
(C48)

which gives

$$\begin{aligned}&\frac{1}{2} \,e \,B \,\langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,y \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\&\quad = - \,i \,\,\frac{1}{2} \,\sqrt{\frac{e \,B}{2}} \,\left\{ \sqrt{n - m} \,\delta _{m^\prime , m+1} \, - \, \sqrt{n - m + 1} \,\delta _{m^\prime , m-1} \right\} .\nonumber \\ \end{aligned}$$
(C49)

Combining the two terms, we obtain

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \, p^{can}_x \,\vert \,\Psi ^{(L_1)}_{n,m} \rangle \nonumber \\&\quad = - \,i \,\sqrt{\frac{e \,B}{2}} \,\left\{ \sqrt{n - m} \,\delta _{m^\prime , m+1} \ - \ \sqrt{n - m + 1} \,\delta _{m^\prime , m-1} \right\} .\nonumber \\ \end{aligned}$$
(C50)

Similarly, we can readily show that

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \, p^{cons}_x ({\varvec{A}}^{(L_1)}) \,\vert \,\Psi ^{(L_1)}_{n,m} \rangle \nonumber \\&\quad = - \,i \,\sqrt{\frac{e \,B}{2}} \,\left\{ \sqrt{n - m} \,\delta _{m^\prime , m+1} \, - \, \sqrt{n - m + 1} \,\delta _{m^\prime , m-1} \right\} ,\nonumber \\ \end{aligned}$$
(C51)

and that

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \, p^{mech}_x ({\varvec{A}}^{(L_1)}) \,\vert \,\Psi ^{(L_1)}_{n,m} \rangle \ = \ 0 . \end{aligned}$$
(C52)

Next, we evaluate the matrix elements of the three OAM operators. First, for the canonical OAM operator, we obtain

$$\begin{aligned}&\quad \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,L^{can}_z \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\&= {}^A \langle n \,\vert \,{}^B \langle n - m^\prime \,\vert \, a^\dagger \,a - b^\dagger \,b \, \vert \,n \rangle ^A \,\vert \,n - m \rangle ^B \nonumber \\&= n \,\delta _{m^\prime , m} \ - \ ( n - m) \,\delta _{m^\prime , m} \ = \ m \,\delta _{m^\prime , m} .\nonumber \\ \end{aligned}$$
(C53)

Since \(L^{cons}_z ({\varvec{A}})\) reduces to \(L^{can}_z\) in the symmetric gauge, we naturally get

$$\begin{aligned} \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,L^{cons}_z ({\varvec{A}}^{(S)}) \,\vert \,\Psi ^{(S)}_{n,m} \rangle \ = \ m \,\delta _{m^\prime , m} , \end{aligned}$$
(C54)

Finally, for the matrix element of the mechanical OAM operator, we find that

$$\begin{aligned} \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,L^{mech}_z ({\varvec{A}}^{(S)}) \,\vert \,\Psi ^{(S)}_{n,m} \rangle \ = \ ( 2 \,n + 1) \,\delta _{m^\prime , m} , \end{aligned}$$
(C55)

Next, we evaluate the matrix elements of the OAM operators between the eigen-states \(\vert \,\Psi ^{(L_1)}_{n,m} \rangle \), which also belong to the \(\vert n,m \rangle \)-basis class. Here we start with the matrix elements of the canonical OAM operator given by

$$\begin{aligned}&\quad \langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \,L^{can}_z \,\vert \,\Psi ^{(L_1)}_{n,m} \rangle = \ \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,U^\dagger \,L^{can}_z \,U \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\&= \ \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \, L^{can}_z \ + \frac{1}{2} \,e \,B \,(x^2 - y^2) \,\vert \,\Psi ^{(S)}_{n,m} \rangle . \end{aligned}$$
(C56)

The second part can be calculated by using the relations

$$\begin{aligned} x^2= & {} \ l^4_B \,(\,\Pi _y - {\tilde{\Pi }}_y )^2 = \frac{1}{2} \,\,l^2 _B \,(\,a + a^\dagger + b + b^\dagger )^2,\quad \end{aligned}$$
(C57)

and

$$\begin{aligned} y^2= & {} \ l^4_B \,(\,\Pi _x - {\tilde{\Pi }}_x )^2 = - \,\frac{1}{2} \,l^2_B \,(\, a - a^\dagger - b + b^\dagger )^2,\nonumber \\ \end{aligned}$$
(C58)

which gives

$$\begin{aligned}&x^2 \ - \ y^2 \nonumber \\&= \ l^2_B \,\, \left\{ \,a^2 \,+ \,b^2 \,+ \,(a^\dagger )^2 \,+ \,(b^\dagger )^2 \,+ \,a \,b^\dagger \,\right. \nonumber \\&\quad \left. + \,b \,a^\dagger \,+ \,b^\dagger \,a \,+ \,a^\dagger \,b \, \right\} . \end{aligned}$$
(C59)

After some tedious but straightforward algebra, we find that

$$\begin{aligned}&\frac{1}{2} \,e \,B \,\langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,x^2 - y^2 \, \vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\&\quad = \frac{1}{2} \,\left\{ \sqrt{(n-m) \,(n-m+1)} \,\delta _{m^\prime , m+2} \right. \nonumber \\&\quad + \left. \sqrt{(n-m+1) \,(n-m+2)} \,\delta _{m^\prime ,m-2} \right\} , \end{aligned}$$
(C60)

which in turn gives

$$\begin{aligned}&\langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \,L^{can}_z \,\vert \,\Psi ^{(L_1)}_{n,m} \rangle \nonumber \\&\quad = m \,\delta _{m^\prime ,m} \nonumber \\&\quad + \frac{1}{2} \,\left\{ \sqrt{(n-m) \,(n-m+1)} \,\delta _{m^\prime , m+2} \right. \nonumber \\&\quad + \left. \sqrt{(n-m+1) \,(n-m+2)} \,\delta _{m^\prime ,m-2} \right\} . \end{aligned}$$
(C61)

Since both of \(L^{cons}_z ({\varvec{A}})\) and \(L^{mech}_z ({\varvec{A}})\) transform covariantly under a gauge transformation, their matrix elements between the eigen-state \(\vert \,\Psi ^{(L_1)}_{n,m} \rangle \) can easily be obtained from those between the eigen-states \(\vert \,\Psi ^{(S)}_{n,m} \rangle \) as

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \,L^{cons}_z ({\varvec{A}}^{(L_1)}) \,\vert \,\Psi ^{(L_1)}_{n,m} \rangle= & {} \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,L^{cons}_z ({\varvec{A}}^{(S)}) \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\= & {} m \,\delta _{m^\prime , m} , \end{aligned}$$
(C62)

and

$$\begin{aligned} \langle \Psi ^{(L_1)}_{n,m^\prime } \,\vert \,L^{mech}_z ({\varvec{A}}^{(L_1)}) \,\vert \,\Psi ^{(L_1)} \rangle= & {} \langle \Psi ^{(S)}_{n,m^\prime } \,\vert \,L^{mech}_z ({\varvec{A}}^{(S)}) \,\vert \,\Psi ^{(S)}_{n,m} \rangle \nonumber \\= & {} ( 2 \,n + 1 ) \,\delta _{m^\prime , m} . \end{aligned}$$
(C63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakamatsu, M., Hayashi, A. Physical symmetries and gauge choices in the Landau problem. Eur. Phys. J. A 58, 121 (2022). https://doi.org/10.1140/epja/s10050-022-00770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00770-2

Navigation