Skip to main content
Log in

Investigating the proton-halo structure of \(^8\)B via the extended THSR wave function

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Due to the proton-halo structure, the \(^8\)B nucleus has been attractive for many experimental and theoretical studies. In this work, we perform theoretical calculations on the ground state of \(^8\)B through a further extended Tohsaki–Horiuchi–Schuck–Röpke (THSR) wave function. The \(^8\)B nucleus is treated as an \(\alpha \) + \(^3\)He + p system where the two clusters move inside modified containers, which are formulated in this work to describe the various modes of cluster motion. Through variational calculations, it is found that our new THSR wave functions are very efficient in describing the ground state of \(^8\)B, which can be accurately described by a superposition of only two basis states, namely the spindle shaped one and the elliptical one. It is of particular interest to find that the latter basis has a dominant contribution to the proton-halo structure. We further illustrate the property of the proton halo in \(^8\)B by calculating the radius and the electric quadrupole moment of \(^8\)B. The obtained result shows a large electric quadrupole moment in the ground state of \(^8\)B, which is in good agreement with the experimental data and other theoretical calculations. It is found that in one basis state, the large electric quadrupole moment is contributed by the polarization of the \(^7\)Be core, while in the other basis it is primarily due to the proton halo structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data presented in this work can be calculated using theoretical model introduced in the text.]

References

  1. I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N. Takahashi, T. Shimoda, H. Sato, Phys. Lett. B 206, 592–596 (1988)

    Article  ADS  Google Scholar 

  2. F. Negoita, C. Borcea, F. Carstoiu et al., Phys. Rev. C 54, 1787–1797 (1996)

    Article  ADS  Google Scholar 

  3. A.V. Dobrovolsky, G.A. Korolev, A.G. Inglessi et al., Nucl. Phys. 989, 40–58 (2019)

    Article  Google Scholar 

  4. Z. Ren, G. Xu, Phys. Lett. B 252, 311 (1990)

    Article  ADS  Google Scholar 

  5. Z. Ren, W. Mittig, B. Chen, Z. Ma, Phys. Rev. C 52, R20 (1995)

    Article  ADS  Google Scholar 

  6. Z. Ren, G. Xu, B. Chen, Z. Ma, W. Mittig, Phys. Lett. B 351, 11 (1995)

    Article  ADS  Google Scholar 

  7. T. Motobayashi, Nucl. Phys. A 693, 258 (2001)

    Article  ADS  Google Scholar 

  8. M.H. Smedberg, T. Baumann, T. Aumann, L. Axelsson, U. Bergmann, M.J.G. Borge, D. Cortina-Gil, L.M. Fraile, H. Geissel, L. Grigorenko, Phys. Lett. B 452, 1 (1999)

    Article  ADS  Google Scholar 

  9. A. Csótó, Phys. Lett. B 315, 24–28 (1993)

    Article  ADS  Google Scholar 

  10. D. Baye, P. Descouvemont, N.K. Timofeyuk, Nucl. Phys. 588, c147–c152 (1995)

    Article  ADS  Google Scholar 

  11. P. Descouvemont, D. Baye, Phys. Lett. B 292, 235–238 (1992)

    Article  ADS  Google Scholar 

  12. K. Varga, Y. Suzuki, I. Tanihata, Phys. Rev. C 52, 3013 (1995)

    Article  ADS  Google Scholar 

  13. N. Furutachi, M. Kimura, A. Doté, Y. Kanada-En’yo, Prog. Theor. Phys. 122, 865–880 (2009)

    Article  ADS  Google Scholar 

  14. L.V. Grigorenko, B.V. Danilin, V.D. Efros, N.B. Shul’gina, M.V. Zhukov, Phys. Rev. C 57, R2099–R2103 (1998)

    Article  ADS  Google Scholar 

  15. K.R. Henninger, T. Neff, H. Feldmeier, J. Phys: Conf. Ser. 599, 012038 (2015)

    Google Scholar 

  16. S. Pastore, S.C. Pieper, R. Schiavilla, R.B. Wiringa, Phys. Rev. C 87, 035503 (2013)

    Article  ADS  Google Scholar 

  17. C. Wang, T. Dong, Z.Y. Zhu, Z. Ren, Mod. Phys. Lett. 24, 1453–1460 (2009)

    Article  ADS  Google Scholar 

  18. P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, T. Yamada, Phys. Scr. 91, 123001 (2016)

    Article  ADS  Google Scholar 

  19. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Rev. Mod. Phys. 89, 011002 (2017)

    Article  ADS  Google Scholar 

  20. B. Zhou, Y. Funaki, H. Horiuchi, A. Tohsaki, Front. Phys. 15, 14401 (2019)

  21. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)

  22. B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Phys. Rev. Lett. 110, 262501 (2013)

    Article  ADS  Google Scholar 

  23. B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Phys. Rev. C 89, 034319 (2014)

    Article  ADS  Google Scholar 

  24. T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, A. Tohsaki, Phys. Rev. Lett. 112, 062501 (2014)

    Article  ADS  Google Scholar 

  25. Y. Funaki, Phys. Rev. C 97, 021304 (2018)

    Article  ADS  Google Scholar 

  26. Y. Funaki, H. Horiuchi, A. Tohsaki, P. Schuck, G. Röpke, Prog. Theor. Phys. 108, 297–322 (2002)

    Article  ADS  Google Scholar 

  27. Y. Funaki, T. Yamada, E. Hiyama, B. Zhou, K. Ikeda, Prog. Theor. Exp. Phys. 2014, 11 (2014)

    Article  Google Scholar 

  28. M. Lyu, Z. Ren, B. Zhou, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Phys. Rev. C 91, 014313 (2015)

    Article  ADS  Google Scholar 

  29. M. Lyu, Z. Ren, B. Zhou, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Phys. Rev. C 93, 054308 (2016)

    Article  ADS  Google Scholar 

  30. M. Lyu, K. Yoshida, Y. Kanada-En’yo, K. Ogata, Phys. Rev. C 97, 044612 (2018)

    Article  ADS  Google Scholar 

  31. M. Lyu, K. Yoshida, Y. Kanada-En’yo, K. Ogata, Phys. Rev. C 99, 064610 (2019)

    Article  ADS  Google Scholar 

  32. M. Lyu, Z. Ren, H. Horiuchi, B. Zhou, Y. Funaki, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Eur. Phys. J. A 57, 51 (2021)

    Article  ADS  Google Scholar 

  33. Q. Zhao, Z. Ren, M. Lyu, H. Horiuchi, Y. Funaki, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, B. Zhou, Phys. Rev. C 97, 054323 (2018)

    Article  ADS  Google Scholar 

  34. Q. Zhao, Z. Ren, M. Lyu, H. Horiuchi, Y. Kanada-En’yo, Y. Funaki, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, B. Zhou, Phys. Rev. C 100, 014306 (2019)

    Article  ADS  Google Scholar 

  35. H. Esbensen, G.F. Bertsch, Nucl. Phys. 600, 37–62 (1996)

    Article  Google Scholar 

  36. H. Esbensen, in International School of Heavy Ion Physics: 4th Course: Exotic Nuclei, edited by R (A. Broglia and P. G, Hansen (World Scientific, Singapore, 1998)

    Google Scholar 

  37. D.M. Brink, A. Weiguny, Nucl. Phys. 120, 59–93 (1968)

    Article  Google Scholar 

  38. B. Bally, M. Bender, Phys. Rev. C 103, 024315 (2021)

    Article  ADS  Google Scholar 

  39. A.B. Volkov, Nucl. Phys. 74, 33–58 (1965)

    Article  Google Scholar 

  40. N. Yamaguchi, T. Kasahara, S. Nagata, Y. Akaishi, Prog. Theor. Phys. 62, 1018–1034 (1979)

    Article  ADS  Google Scholar 

  41. D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. 745, 155–362 (2004)

    Article  Google Scholar 

  42. F. Carstoiu, L. Trache, C.A. Gagliardi, A.M. Mukhamedzhanov, R.E. Tribble, Rom. Rep. Phys. 59, 357 (2007)

    Google Scholar 

  43. T. Minamisono, T. Ohtsubo, I. Minami, S. Fukuda, A. Kitagawa, M. Fukuda, K. Matsuta, Y. Nojiri, S. Takeda, H. Sagawa, H. Kitagawa, Phys. Rev. Lett. 69, 2058–2061 (1992)

    Article  ADS  Google Scholar 

  44. D. Baye, P. Descouvemont, N.K. Timofeyuk, Nucl. Phys. 577, 624–640 (1994)

    Article  Google Scholar 

  45. B. Brown, A. Csótó, R. Sherr, Nucl. Phys. 597, 66–84 (1996)

    Article  Google Scholar 

  46. H. Kitagawa, Prog. Theor. Exp. Phys. 102, 1015–1026 (1999)

    Article  ADS  Google Scholar 

  47. P. Descouvemont, E.C. Pinilla, Few-Body Syst. 60, 1–10 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12035011, 11975167, 11761161001, 11535004, 11881240623, 11961141003, and 11822503), by the National Key R&D Program of China (Contracts Nos. 2018YFA0404403 and 2016YFE0129300), by the Science and Technology Development Fund of Macau under Grant No. 008/2017/AFJ. The author M.L. is supported by the National Natural Science Foundation of China (Grants No. 12105141), Jiangsu Provincial Natural Science Foundation (Grants No. BK20210277), and the 2021 Jiangsu Shuangchuang (Mass Innovation and Entrepreneurship) Talent Program (Grants No. JSSCBS20210169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengjiao Lyu or Zhongzhou Ren.

Additional information

Communicated by V. Somà

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., Li, S., Zhao, Q. et al. Investigating the proton-halo structure of \(^8\)B via the extended THSR wave function. Eur. Phys. J. A 58, 58 (2022). https://doi.org/10.1140/epja/s10050-022-00705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00705-x

Navigation