Skip to main content
Log in

Structure of \(^{128,129,130}\)Xe through multi-reference energy density functional calculations

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Recently, values for the Kumar quadrupole deformation parameters of the nucleus \(^{130}\)Xe have been computed from the results of a Coulomb excitation experiment, indicating that this xenon isotope has a prominent triaxial ground state. Within a different context, it was recently argued that the analysis of particle correlations in the final states of ultra-relativistic heavy-ion collisions performed at the Large Hadron Collider (LHC) points to a similar structure for the adjacent isotope, \(^{129}\)Xe. In the present work, we report on state-of-the-art multi-reference energy density functional calculations that combine projection on proton and neutron number as well as angular momentum with shape mixing for the three isotopes \(^{128,129,130}\)Xe using the Skyrme-type pseudo-potential SLyMR1. Exploring the triaxial degree of freedom, we demonstrate that the ground states of all three isotopes display a very pronounced triaxial structure. Moreover, comparison with experimental results shows that the calculations reproduce fairly well the low-energy excitation spectrum of the two even-mass isotopes. By contrast, the calculation of \(^{129}\)Xe reveals some deficiencies of the effective interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The final data are the results discussed in the article. Intermediate data (e.g. wave functions) are not shared.]

Notes

  1. When considering the axial deformation, this corresponds to a spacing \(\varDelta \beta \approx 0.05\).

  2. See Sect. 3.2.3 for more comments on the matter.

  3. When generating the deformed quasi-particle vacua, however, we neglected Coulomb pairing and used the much less costly Slater approximation for the Coulomb exchange energy.

  4. Note that all the extrema discussed in this article are computed from an interpolation based on the results obtained at the points on the discretized deformation mesh as defined in Sect. 2.2.

  5. We note in passing that three different recent data compilations provide slightly different values for the B(E2). The one we list in Table 1 is taken from [68], while one can also find 1634(32) [69] and 1596(76) [75] for the same \(B(E2:2_1^+ \rightarrow 0_1^+) = \tfrac{1}{5} \, B(E2:0_1^+ \rightarrow 2_1^+)\) value, and which yield values for \(\beta _r (0^+_1)\) that are 0.192(2) and 0.1885(46), respectively.

  6. We remark that the surface obtained from the interpolation of the cwf and displayed in Fig. 4 has not been normalized.

  7. A safer procedure to compute the average of an angle would be to first to compute the average of the complex number \(\beta \exp (i\gamma )\) and then extract its argument. In practice, however, the two procedures give similar results because we explore here only the first sextant of the \(\beta \)-\(\gamma \) plane.

  8. In a MR-EDF approach, one could in principle evaluate the expectation values of \({\hat{E}}_2^{(n)}\) directly. Beginning with \(n=3\), however, their calculation will become orders of magnitude more costly than the calculation of anything else in our implementation.

  9. We note that a different strategy was used to produced the results published in Ref. [24]. In those calculations we targeted specifically the lowest \(1/2^+\) MR-EDF state and included only quasi-particle vacua that contain such components in their decomposition. Still, the two sets contain many common reference states and the final results obtained using one or the other are consistent.

  10. We remark that, following this strategy, one can end up with several different one-quasi-particle states selected for a given deformation.

  11. We stress here that we only display a few out of the low-lying states known experimentally as well as their theoretical counterparts.

  12. We recall that for a well-deformed odd nucleus, two different rotational bands can be constructed on top of each blocked quasiparticle. For the so-called favoured band, the component of the angular momentum of the blocked quasiparticle on the axis of collective rotation points into the direction of collective rotation, whereas for the disfavored band it points against the direction of collective rotation [98].

  13. We recall that adding further correlations at the MR level, for example by including octupole-deformed reference states that are also parity projected in addition to the projections already considered here, can be expected to shift again the relative positions of the MR band heads when calculated with the same interaction, meaning that slightly different predictions for the single-particle energies would be needed to reach a similar agreement with data in that case.

References

  1. Å. Bohr, B.R. Mottelson, Nuclear Structure, vol. 1 and 2 (World Scientific Publishing, Singapore, 1998)

  2. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980)

    Book  Google Scholar 

  3. G. Ripka, The Hartree-Fock theory of deformed light nuclei. Adv. Nucl. Phys. 1, 183 (1968)

    Article  Google Scholar 

  4. K. Kumar, Intrinsic quadrupole moments and shapes of nuclear ground states and excited states. Phys. Rev. Lett. 28, 249–253 (1972). https://doi.org/10.1103/PhysRevLett.28.249

    Article  ADS  Google Scholar 

  5. A. Poves, F. Nowacki, Y. Alhassid, Limits on assigning a shape to a nucleus. Phys. Rev. C 101, 054307 (2020). https://doi.org/10.1103/PhysRevC.101.054307

    Article  ADS  Google Scholar 

  6. D. Cline, Nuclear shapes studied by Coulomb excitation. Annu. Rev. Nucl. Part. Sci. 36(1), 683–716 (1986). https://doi.org/10.1146/annurev.ns.36.120186.003343

    Article  ADS  Google Scholar 

  7. A.D. Ayangeakaa, R.V.F. Janssens, C. Wu, J.M. Allmond, J.L. Wood, S. Zhu, M. Albers, S. Almaraz-Calderon, B. Bucher, M.P. Carpenter, C.J. Chiara, D. Cline, H. Crawford, H.M. David, J. Harker, A.B. Hayes, C.R. Hoffman, B.P. Kay, K. Kolos, A. Korichi, T. Lauritsen, A.O. Macchiavelli, A. Richard, D. Seweryniak, A. Wiens, Shape coexistence and the role of axial asymmetry in \(^{72}\)Ge. Phys. Lett. B 754, 254–259 (2016). https://doi.org/10.1016/j.physletb.2016.01.036

    Article  ADS  Google Scholar 

  8. A.D. Ayangeakaa, R.V.F. Janssens, S. Zhu, D. Little, J. Henderson, C.Y. Wu, D.J. Hartley, M. Albers, K. Auranen, B. Bucher, M.P. Carpenter, P. Chowdhury, D. Cline, H.L. Crawford, P. Fallon, A.M. Forney, A. Gade, A.B. Hayes, F.G. Kondev, Krishichayan, T. Lauritsen, J. Li, A.O. Macchiavelli, D. Rhodes, D. Seweryniak, S.M. Stolze, W.B. Walters, J. Wu, Evidence for rigid triaxial deformation in \(^{76}\rm Ge\) from a model-independent analysis. Phys. Rev. Lett. 123, 102501 (2019). https://doi.org/10.1103/PhysRevLett.123.102501

    Article  ADS  Google Scholar 

  9. J. Henderson, C.Y. Wu, J. Ash, B.A. Brown, P.C. Bender, R. Elder, B. Elman, A. Gade, M. Grinder, H. Iwasaki, B. Longfellow, T. Mijatović, D. Rhodes, M. Spieker, D. Weisshaar, Triaxiality in selenium-76. Phys. Rev. C 99, 054313 (2019). https://doi.org/10.1103/PhysRevC.99.054313

    Article  ADS  Google Scholar 

  10. M. Zielinska, private communication as quoted in [114]

  11. L. Morrison, K. Hadyńska-Klȩk, Z. Podolyák, D.T. Doherty, L.P. Gaffney, L. Kaya, L. Próchniak, J. Samorajczyk-Pyśk, J. Srebrny, T. Berry, A. Boukhari, M. Brunet, R. Canavan, R. Catherall, S.J. Colosimo, J.G. Cubiss, H. De Witte, C. Fransen, E. Giannopoulos, H. Hess, T. Kröll, N. Lalović, B. Marsh, Y.M. Palenzuela, P.J. Napiorkowski, G. O’Neill, J. Pakarinen, J.P. Ramos, P. Reiter, J.A. Rodriguez, D. Rosiak, S. Rothe, M. Rudigier, M. Siciliano, J. Snäll, P. Spagnoletti, S. Thiel, N. Warr, F. Wenander, R. Zidarova, M. Zielińska, Quadrupole deformation of \(^{130}\rm Xe \) measured in a Coulomb-excitation experiment. Phys. Rev. C 102, 054304 (2020). https://doi.org/10.1103/PhysRevC.102.054304

    Article  ADS  Google Scholar 

  12. L. Adamczyk et al., Azimuthal anisotropy in U\(+\)U and Au\(+\)Au collisions at RHIC. Phys. Rev. Lett. 115(22), 222301 (2015). https://doi.org/10.1103/PhysRevLett.115.222301. arXiv:1505.07812

    Article  ADS  Google Scholar 

  13. S. Acharya, et al., Anisotropic flow in Xe-Xe collisions at \({\sqrt{s_{\rm {NN}}}} = {5.44}\) TeV, Phys. Lett. B 784 (2018) 82–95. https://doi.org/10.1016/j.physletb.2018.06.059arXiv:1805.01832

  14. A. M. Sirunyan, et al., Charged-particle angular correlations in XeXe collisions at \(\sqrt{s_{\rm NN}}=\) 5.44 TeV, Phys. Rev. C 100 (4) (2019) 044902. https://doi.org/10.1103/PhysRevC.100.044902arXiv:1901.07997

  15. G. Aad, et al., Measurement of the azimuthal anisotropy of charged-particle production in Xe+Xe collisions at \(\sqrt{s_{\rm NN}}=5.44\) TeV with the ATLAS detector, Phys. Rev. C 101 (2) (2020) 024906. arXiv:1911.04812, https://doi.org/10.1103/PhysRevC.101.024906

  16. M. Abdallah, et al., Search for the chiral magnetic effect with isobar collisions at \(\sqrt{s_{NN}}\)=200 GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 105 (1) (2022) 014901. arXiv:2109.00131, https://doi.org/10.1103/PhysRevC.105.014901

  17. ATLAS Collaboration, Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation (2022). arXiv:2205.00039

  18. A. Goldschmidt, Z. Qiu, C. Shen, U. Heinz, Collision geometry and flow in uranium + uranium collisions, Phys. Rev. C 92 (4) (2015) 044903. arXiv:1507.03910, https://doi.org/10.1103/PhysRevC.92.044903

  19. G. Giacalone, J. Noronha-Hostler, M. Luzum, J.-Y. Ollitrault, Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions, Phys. Rev. C 97 (3) (2018) 034904. arXiv:1711.08499, https://doi.org/10.1103/PhysRevC.97.034904

  20. G. Giacalone, Elliptic flow fluctuations in central collisions of spherical and deformed nuclei, Phys. Rev. C 99 (2) (2019) 024910. arXiv:1811.03959, https://doi.org/10.1103/PhysRevC.99.024910

  21. G. Giacalone, Observing the deformation of nuclei with relativistic nuclear collisions. Phys. Rev. Lett. 124, 202301 (2020). https://doi.org/10.1103/PhysRevLett.124.202301

    Article  ADS  Google Scholar 

  22. G. Giacalone, Constraining the quadrupole deformation of atomic nuclei with relativistic nuclear collisions. Phys. Rev. C 102(2), 024901 (2020). https://doi.org/10.1103/PhysRevC.102.024901. arXiv:2004.14463

    Article  ADS  Google Scholar 

  23. J. Jia, Shape of atomic nuclei in heavy ion collisions. Phys. Rev. C 105(1), 014905 (2022). https://doi.org/10.1103/PhysRevC.105.014905. arXiv:2106.08768

    Article  ADS  Google Scholar 

  24. B. Bally, M. Bender, G. Giacalone, V. Somà, Evidence of the triaxial structure of \(^{129}\rm Xe \) at the large hadron collider. Phys. Rev. Lett. 128, 082301 (2022). https://doi.org/10.1103/PhysRevLett.128.082301

    Article  ADS  Google Scholar 

  25. J. Jia, Probing triaxial deformation of atomic nuclei in high-energy heavy ion collisions. Phys. Rev. C 105(4), 044905 (2022). https://doi.org/10.1103/PhysRevC.105.044905. arXiv:2109.00604

    Article  ADS  Google Scholar 

  26. C. Zhang, J. Jia, Evidence of Quadrupole and Octupole Deformations in Zr96+Zr96 and Ru96+Ru96 Collisions at Ultrarelativistic Energies. Phys. Rev. Lett. 128(2), 022301 (2022). https://doi.org/10.1103/PhysRevLett.128.022301. arXiv:2109.01631

    Article  ADS  Google Scholar 

  27. H.-j. Xu, W. Zhao, H. Li, Y. Zhou, L.-W. Chen, F. Wang, Probing nuclear structure with mean transverse momentum in relativistic isobar collisions (11 2021). arXiv:2111.14812

  28. G. Nijs, W. van der Schee, Inferring nuclear structure from heavy isobar collisions using Trajectum (12 2021). arXiv:2112.13771

  29. S. Zhao, H.-j. Xu, Y.-X. Liu, H. Song, Probing the nuclear deformation with three-particle asymmetric cumulant in RHIC isobar runs (4 2022). arXiv:2204.02387

  30. N. Magdy, Impact of nuclear deformation on collective flow observables in relativistic U+U collisions (6 2022). arXiv:2206.05332

  31. M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003). https://doi.org/10.1103/RevModPhys.75.121

    Article  ADS  Google Scholar 

  32. N. Schunck (Ed.), Energy Density Functional Methods for Atomic Nuclei, 2053–2563, IOP Publishing, 2019. https://doi.org/10.1088/2053-2563/aae0ed

  33. J. L. Egido, State-of-the-art of beyond mean field theories with nuclear density functionals, Physica Scripta 91 (7) (2016) 073003. http://stacks.iop.org/1402-4896/91/i=7/a=073003

  34. L.M. Robledo, T.R. Rodríguez, R.R. Rodríguez-Guzmán, Mean field and beyond description of nuclear structure with the Gogny force: a review. J. Phys. G: Nucl. Part. Phys. 46(1), 013001 (2018). https://doi.org/10.1088/1361-6471/aadebd

    Article  ADS  Google Scholar 

  35. M. Bender, P.-H. Heenen, Configuration mixing of angular-momentum and particle-number projected triaxial Hartree-Fock-Bogoliubov states using the Skyrme energy density functional. Phys. Rev. C 78, 024309 (2008). https://doi.org/10.1103/PhysRevC.78.024309

    Article  ADS  Google Scholar 

  36. T.R. Rodríguez, J.L. Egido, Triaxial angular momentum projection and configuration mixing calculations with the Gogny force. Phys. Rev. C 81, 064323 (2010). https://doi.org/10.1103/PhysRevC.81.064323

    Article  ADS  Google Scholar 

  37. B. Bally, B. Avez, M. Bender, P.-H. Heenen, Beyond mean-field calculations for odd-mass nuclei. Phys. Rev. Lett. 113, 162501 (2014). https://doi.org/10.1103/PhysRevLett.113.162501

    Article  ADS  Google Scholar 

  38. M. Borrajo, T.R. Rodríguez, J.L. Egido, Symmetry conserving configuration mixing method with cranked states. Phys. Lett. B 746, 341–346 (2015). https://doi.org/10.1016/j.physletb.2015.05.030

    Article  ADS  Google Scholar 

  39. B. Bally, M. Bender, Projection on particle number and angular momentum: Example of triaxial Bogoliubov quasiparticle states. Phys. Rev. C 103, 024315 (2021). https://doi.org/10.1103/PhysRevC.103.024315

    Article  ADS  Google Scholar 

  40. P. Bonche, H. Flocard, P. Heenen, Self-consistent calculation of nuclear rotations: The complete yrast line of \(^{24}\)Mg. Nucl. Phys. A 467(1), 115–135 (1987). https://doi.org/10.1016/0375-9474(87)90331-9

    Article  ADS  Google Scholar 

  41. D.L. Hill, J.A. Wheeler, Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102–1145 (1953). https://doi.org/10.1103/PhysRev.89.1102

    Article  ADS  MATH  Google Scholar 

  42. J.J. Griffin, J.A. Wheeler, Collective motions in nuclei by the method of generator coordinates. Phys. Rev. 108, 311–327 (1957). https://doi.org/10.1103/PhysRev.108.311

    Article  ADS  MATH  Google Scholar 

  43. P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, J. Meyer, Analysis of the generator coordinate method in a study of shape isomerism in \(^{194}\)Hg. Nucl. Phys. A 510(3), 466–502 (1990). https://doi.org/10.1016/0375-9474(90)90062-Q

    Article  ADS  Google Scholar 

  44. R. Balian, E. Brézin, Nonunitary Bogoliubov transformations and extension of Wick’s theorem. Nuovo Cimento 64, 37 (1969)

    Article  MathSciNet  Google Scholar 

  45. L.M. Robledo, Sign of the overlap of Hartree-Fock-Bogoliubov wave functions. Phys. Rev. C 79, 021302 (2009). https://doi.org/10.1103/PhysRevC.79.021302

    Article  ADS  Google Scholar 

  46. B. Avez, M. Bender, Evaluation of overlaps between arbitrary fermionic quasiparticle vacua. Phys. Rev. C 85, 034325 (2012). https://doi.org/10.1103/PhysRevC.85.034325

    Article  ADS  Google Scholar 

  47. J. Dobaczewski, J. Dudek, S.G. Rohoziński, T.R. Werner, Point symmetries in the Hartree-Fock approach. I. Densities, shapes, and currents. Phys. Rev. C 62, 014310 (2000). https://doi.org/10.1103/PhysRevC.62.014310

    Article  ADS  Google Scholar 

  48. J. Dobaczewski, J. Dudek, S.G. Rohoziński, T.R. Werner, Point symmetries in the Hartree-Fock approach. II. Symmetry-breaking schemes. Phys. Rev. C 62, 014311 (2000). https://doi.org/10.1103/PhysRevC.62.014311

    Article  ADS  Google Scholar 

  49. D. Baye, P.-H. Heenen, Generalised meshes for quantum mechanical problems. J. Phys. A: Math. Gen. 19(11), 2041–2059 (1986). https://doi.org/10.1088/0305-4470/19/11/013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. V. Hellemans, P.-H. Heenen, M. Bender, Tensor part of the skyrme energy density functional. iii. Time-odd terms at high spin. Phys. Rev. C 85, 014326 (2012). https://doi.org/10.1103/PhysRevC.85.014326

    Article  ADS  Google Scholar 

  51. B. Gall, P. Bonche, J. Dobaczewski, H. Flocard, P.H. Heenen, Superdeformed rotational bands in the mercury region. a cranked Skyrme-Hartree-Fock-Bogoliubov study. Z. Phys. A 348(3), 183–197 (1994). https://doi.org/10.1007/BF01291916

    Article  ADS  Google Scholar 

  52. W. Ryssens, P.-H. Heenen, M. Bender, Numerical accuracy of mean-field calculations in coordinate space. Phys. Rev. C 92, 064318 (2015). https://doi.org/10.1103/PhysRevC.92.064318

    Article  ADS  Google Scholar 

  53. W. Ryssens, V. Hellemans, M. Bender, P.-H. Heenen, Solution of the Skyrme-HF+BCS equation on a 3d mesh, II: A new version of the Ev8 code. Computer Physics Communications 187, 175–194 (2015) https://doi.org/10.1016/j.cpc.2014.10.001www.sciencedirect.com/science/article/pii/S0010465514003361

  54. N. Schunck, J. Dobaczewski, J. McDonnell, J. Moré, W. Nazarewicz, J. Sarich, M.V. Stoitsov, One-quasiparticle states in the nuclear energy density functional theory. Phys. Rev. C 81, 024316 (2010). https://doi.org/10.1103/PhysRevC.81.024316

    Article  ADS  Google Scholar 

  55. R. Jodon, Ajustements de fonctionnelles de Skyrme généralisées, Ph.D. thesis, Université Claude Bernard - Lyon 1 (2014). https://tel.archives-ouvertes.fr/tel-01158085

  56. J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, T. Duguet, Skyrme pseudo-potential-based EDF parametrization for spuriousity-free MR EDF calculations. Phys. Scr. T154, 014013 (2013). https://doi.org/10.1088/0031-8949/2013/t154/014013

    Article  ADS  Google Scholar 

  57. J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, P.G. Reinhard, Particle-number projection and the density functional theory. Phys. Rev. C 76, 054315 (2007). https://doi.org/10.1103/PhysRevC.76.054315

    Article  ADS  Google Scholar 

  58. D. Lacroix, T. Duguet, M. Bender, Configuration mixing within the energy density functional formalism: Removing spurious contributions from nondiagonal energy kernels. Phys. Rev. C 79, 044318 (2009). https://doi.org/10.1103/PhysRevC.79.044318

    Article  ADS  Google Scholar 

  59. M. Bender, T. Duguet, D. Lacroix, Particle-number restoration within the energy density functional formalism. Phys. Rev. C 79, 044319 (2009). https://doi.org/10.1103/PhysRevC.79.044319

    Article  ADS  Google Scholar 

  60. T. Duguet, M. Bender, K. Bennaceur, D. Lacroix, T. Lesinski, Particle-number restoration within the energy density functional formalism: Nonviability of terms depending on noninteger powers of the density matrices. Phys. Rev. C 79, 044320 (2009). https://doi.org/10.1103/PhysRevC.79.044320

    Article  ADS  Google Scholar 

  61. A. Pastore, D. Davesne, J. Navarro, Linear response of homogeneous nuclear matter with energy density functionals. Physics Reports 563, 1–67 (2015) https://doi.org/10.1016/j.physrep.2014.11.002www.sciencedirect.com/science/article/pii/S0370157314003998

  62. A. Bulgac, Y. Yu, Renormalization of the Hartree-Fock-Bogoliubov equations in the case of a zero range pairing interaction. Phys. Rev. Lett. 88, 042504 (2002). https://doi.org/10.1103/PhysRevLett.88.042504

    Article  ADS  Google Scholar 

  63. J.M. Yao, J. Meng, P. Ring, D. Vretenar, Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. Phys. Rev. C 81, 044311 (2010). https://doi.org/10.1103/PhysRevC.81.044311

    Article  ADS  Google Scholar 

  64. B. Bally, Description of odd-mass nuclei by multi-reference energy density functional methods, Ph.D. thesis, Université de Bordeaux (2014). https://tel.archives-ouvertes.fr/tel-01023059

  65. A.M. Romero, J.M. Yao, B. Bally, T.R. Rodríguez, J. Engel, Application of an efficient generator-coordinate subspace-selection algorithm to neutrinoless double-\(\beta \) decay. Phys. Rev. C 104, 054317 (2021). https://doi.org/10.1103/PhysRevC.104.054317

    Article  ADS  Google Scholar 

  66. J. Martínez-Larraz, T. R. Rodríguez, in preparation (2022)

  67. D.D. Dao, F. Nowacki, Nuclear structure within a discrete nonorthogonal shell model approach: New frontiers. Phys. Rev. C 105, 054314 (2022). https://doi.org/10.1103/PhysRevC.105.054314

    Article  ADS  Google Scholar 

  68. Data retrieved from the iaea online nuclear data services. https://www-nds.iaea.org/

  69. Z. Elekes, J. Timar, Nuclear data sheets for \(A = 128\). Nuclear Data Sheets 129, 191–436 (2015) https://doi.org/10.1016/j.nds.2015.09.002www.sciencedirect.com/science/article/pii/S0090375215000472

  70. I. Angeli, K. Marinova, Table of experimental nuclear ground state charge radii: An update. Atomic Data and Nuclear Data Tables 99(1), 69–95 (2013) https://doi.org/10.1016/j.adt.2011.12.006www.sciencedirect.com/science/article/pii/S0092640X12000265

  71. N. Stone, Table of nuclear electric quadrupole moments. Atomic Data and Nuclear Data Tables 111–112, 1–28 (2016) https://doi.org/10.1016/j.adt.2015.12.002www.sciencedirect.com/science/article/pii/S0092640X16000024

  72. N. J. Stone, Table of recommended magnetic dipole moments: Part II, Short-lived states, INDC(NDS)-0816 (2020). https://www-nds.iaea.org/publications/indc/indc-nds-0816.pdf

  73. W.J. Huang, M. Wang, F.G. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures. Chin. Phys. C 45(3), 030002 (2021). https://doi.org/10.1088/1674-1137/abddb0

    Article  ADS  Google Scholar 

  74. M. Wang, W. Huang, F. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (II). tables, graphs and references. Chin. Phys. C 45(3), 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  ADS  Google Scholar 

  75. B. Pritychenko, M. Birch, B. Singh, M. Horoi, Tables of \(E2\) transition probabilities from the first \(2^+\) states in even-even nuclei. Atomic Data and Nuclear Data Tables 107, 1–139 (2016) https://doi.org/10.1016/j.adt.2015.10.001www.sciencedirect.com/science/article/pii/S0092640X15000406

  76. A.S. Davydov, G.F. Filippov, Rotational states in even atomic nuclei. Nuclear Physics 8, 237–249 (1958) https://doi.org/10.1016/0029-5582(58)90153-6www.sciencedirect.com/science/article/pii/0029558258901536

  77. J. Srebrny, T. Czosnyka, C. Droste, S. Rohoziński, L. Próchniak, K. Zajaç, K. Pomorski, D. Cline, C.Y. Wu, A. Bäcklin, L. Hasselgren, R.M. Diamond, D. Habs, H. Körner, F. Stephens, C. Baktash, R.P. Kostecki, Experimental and theoretical investigations of quadrupole collective degrees of freedom in \(^{104}\)Ru. Nuclear Physics A 766, 25–51 (2006) https://doi.org/10.1016/j.nuclphysa.2005.11.013www.sciencedirect.com/science/article/pii/S0375947405012029

  78. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific Publishing, Singapore, 1988)

    Book  Google Scholar 

  79. A. Arima, F. Iachello, Interacting boson model of collective nuclear states iv. the o(6) limit, Annals of Physics 123 (2) (1979) 468–492. https://doi.org/10.1016/0003-4916(79)90347-6https://www.sciencedirect.com/science/article/pii/0003491679903476

  80. J. Meyer-Ter-Vehn, The 0(6) limit of the interacting boson model and its relation to triaxial nuclear models. Physics Letters B 84(1), 10–12 (1979) https://doi.org/10.1016/0370-2693(79)90636-1www.sciencedirect.com/science/article/pii/0370269379906361

  81. R.F. Casten, P. von Brentano, An extensive region of O(6)-like nuclei near \(A = 130\). Physics Letters B 152(1), 22–28 (1985) https://doi.org/10.1016/0370-2693(85)91131-1www.sciencedirect.com/science/article/pii/0370269385911311

  82. R.A. Meyer, F.F. Momyer, J.H. Landrum, E.A. Henry, R.P. Yaffe, W.B. Walters, Levels of odd-mass Xe populated in the beta decay of \(^{129}{\rm Cs}\), and \(^{133}{\rm I}\). Phys. Rev. C 14, 1152–1161 (1976). https://doi.org/10.1103/PhysRevC.14.1152

    Article  ADS  Google Scholar 

  83. H. Helppi, J. Hattula, A. Luukko, M. Jääskeläinen, F. Dönau, In-beam study of \(^{127, 129}\rm Xe\) and collective description of the level structures in odd-\(A\)\(\rm Xe\rm \) nuclei. Nuclear Physics A 357(2), 333–355 (1981) https://doi.org/10.1016/0375-9474(81)90225-6www.sciencedirect.com/science/article/pii/0375947481902256

  84. A.D. Irving, P.D. Forsyth, I. Hall, D.G.E. Martin, The properties of low-lying levels of \(^{129}\)Xe and \(^{131}\)Xe. J. Phys. G: Nucl. Phys. 5(11), 1595–1612 (1979). https://doi.org/10.1088/0305-4616/5/11/015

    Article  ADS  Google Scholar 

  85. T. Lönnroth, J. Kumpulainen, C. Tuokko, One- and three-quasiparticle states in \(^{127,129,131,133}\)Xe and their coexistence with band structures. Phys. Scr. 27(4), 228–240 (1983). https://doi.org/10.1088/0031-8949/27/4/002

    Article  ADS  Google Scholar 

  86. Y. Huang, Z.G. Xiao, S.J. Zhu, C. Qi, Q. Xu, W.J. Cheng, H.J. Li, L.M. Lyu, R.S. Wang, W.H. Yan, H. Yi, Y. Zhang, Q.M. Chen, C.Y. He, S.P. Hu, C.B. Li, H.W. Li, P.W. Luo, X.G. Wu, Y.H. Wu, Y. Zheng, J. Zhong, High-spin structures in the \(^{129}\rm Xe \) nucleus. Phys. Rev. C 93, 064315 (2016). https://doi.org/10.1103/PhysRevC.93.064315

    Article  ADS  Google Scholar 

  87. Z. Zhao, J. Yan, A. Gelberg, R. Reinhardt, W. Lieberz, A. Dewald, R. Wirowski, Z. K. O., P. von Brentano, New excited states of the nucleus \(^{129}{{\rm Xe}}\), Z. Phys. A 331 (1988) 113–114. https://doi.org/10.1007/BF01289444

  88. J. Timar, Z. Elekes, B. Singh, Nuclear data sheets for \(A = 129\). Nuclear Data Sheets 121, 143–394 (2014) https://doi.org/10.1016/j.nds.2014.09.002www.sciencedirect.com/science/article/pii/S0090375214006565

  89. R. Banik, S. Bhattacharyya, S. Biswas, S. Bhattacharya, G. Mukherjee, S. Rajbanshi, S. Dar, S. Nandi, S. Ali, S. Chatterjee, S. Das, S. Das Gupta, S. S. Ghugre, A. Goswami, A. Lemasson, D. Mondal, S. Mukhopadhyay, H. Pai, S. Pal, D. Pandit, R. Raut, P. Ray, M. Rejmund, S. Samanta, Revealing multiple band structures in \(^{131}{{\rm Xe}}\) from \(\alpha \)-induced reactions, Phys. Rev. C 101 (2020) 044306. https://doi.org/10.1103/PhysRevC.101.044306

  90. J. Meyer-Ter-Vehn, Collective model description of transitional odd-\(A\) nuclei: (I). The triaxial-rotor-plus-particle model, Nuclear Physics A 249 (1) (1975) 111–140. https://doi.org/10.1016/0375-9474(75)90095-0https://www.sciencedirect.com/science/article/pii/0375947475900950

  91. M.A. Cunningham, Multilevel calculations in odd-mass nuclei (I). Negative-parity states, Nuclear Physics A 385(2), 204–220 (1982) https://doi.org/10.1016/0375-9474(82)90168-3www.sciencedirect.com/science/article/pii/0375947482901683

  92. M.A. Cunningham, Multilevel calculations in odd-mass nuclei (II). Positive-parity states, Nuclear Physics A 385(2), 221–232 (1982) https://doi.org/10.1016/0375-9474(82)90169-5www.sciencedirect.com/science/article/pii/0375947482901695

  93. S. Abu-Musleh, H.M. Abu-Zeid, O. Scholten, A description of odd mass Xe and Te isotopes in the Interacting Boson-Fermion Model. Nuclear Physics A 927, 91–109 (2014) https://doi.org/10.1016/j.nuclphysa.2014.04.009www.sciencedirect.com/science/article/pii/S0375947414000918

  94. K. Nomura, T. Nikšić, D. Vretenar, Shape-phase transitions in odd-mass \(\gamma \)-soft nuclei with mass \({A}\approx 130\). Phys. Rev. C 96, 014304 (2017). https://doi.org/10.1103/PhysRevC.96.014304

    Article  ADS  Google Scholar 

  95. K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, Shape transitions in odd-mass \(\gamma \)-soft nuclei within the Interacting Boson-Fermion Model based on the Gogny energy density functional. Phys. Rev. C 96, 064316 (2017). https://doi.org/10.1103/PhysRevC.96.064316

    Article  ADS  Google Scholar 

  96. T. Duguet, P. Bonche, P.-H. Heenen, J. Meyer, Pairing correlations. I. Description of odd nuclei in mean-field theories. Phys. Rev. C 65, 014310 (2001). https://doi.org/10.1103/PhysRevC.65.014310

    Article  ADS  Google Scholar 

  97. L. Bonneau, P. Quentin, P. Möller, Global microscopic calculations of ground-state spins and parities for odd-mass nuclei. Phys. Rev. C 76, 024320 (2007). https://doi.org/10.1103/PhysRevC.76.024320

    Article  ADS  Google Scholar 

  98. H. Ejiri, M.J.A. de Voigt, Gamma-ray and electron spectroscopy in nuclear physics (Clarendon Press, Oxford, 1989)

    Google Scholar 

  99. N. J. Stone, Table of recommended magnetic dipole moments: Part I, Long-lived states, INDC(NDS)-0794 (2019). https://www-nds.iaea.org/publications/indc/indc-nds-0794.pdf

  100. P. L. Sassarini, J. Dobaczewski, J. Bonnard, R. F. G. Ruiz, Global analysis of electromagnetic moments in odd near doubly magic nuclei (2021). https://doi.org/10.48550/ARXIV.2111.04675arxiv:2111.04675

  101. A. R. Vernon, R. F. Garcia Ruiz, T. Miyagi, C. L. Binnersley, J. Billowes, M. L. Bissell, J. Bonnard, T. E. Cocolios, J. Dobaczewski, G. J. Farooq-Smith, K. T. Flanagan, G. Georgiev, W. Gins, R. P. de Groote, R. Heinke, J. D. Holt, J. Hustings, Á. Koszorús, D. Leimbach, K. M. Lynch, G. Neyens, S. R. Stroberg, S. G. Wilkins, X. F. Yang, D. T. Yordanov, Nuclear moments of indium isotopes reveal abrupt change at magic number 82, Nature 607 (7918) (2022) 260–265. https://doi.org/10.1038/s41586-022-04818-7

  102. T. Ericson, W. Weise, Pions and Nuclei (Clarendon Press, Oxford, 1988)

    Google Scholar 

  103. I.N. Borzov, E.E. Saperstein, S.V. Tolokonnikov, Magnetic moments of spherical nuclei: Status of the problem and unsolved issues. Phys. At. Nucl. 71, 469 (2008). https://doi.org/10.1134/S1063778808030095

    Article  Google Scholar 

  104. G. Co’, V. De Donno, M. Anguiano, R.N. Bernard, A.M. Lallena, Electric quadrupole and magnetic dipole moments of odd nuclei near the magic ones in a self-consistent approach. Phys. Rev. C 92, 024314 (2015). https://doi.org/10.1103/PhysRevC.92.024314

    Article  ADS  Google Scholar 

  105. B. Singh, Nuclear data sheets for \(A = 130\). Nuclear Data Sheets 93(1), 33–242 (2001) https://doi.org/10.1006/ndsh.2001.0012www.sciencedirect.com/science/article/pii/S0090375201900122

  106. M. Bender, G.F. Bertsch, P.-H. Heenen, Global study of quadrupole correlation effects. Phys. Rev. C 73, 034322 (2006). https://doi.org/10.1103/PhysRevC.73.034322

    Article  ADS  Google Scholar 

  107. T. Duguet, P. Bonche, P.-H. Heenen, J. Meyer, Phys. Rev. C 65, 014311 (2001). https://journals.aps.org/prc/abstract/10.1103/PhysRevC.65.014311

  108. P.-G. Reinhard, W. Nazarewicz, Toward a global description of nuclear charge radii: Exploring the Fayans energy density functional. Phys. Rev. C 95, 064328 (2017). https://doi.org/10.1103/PhysRevC.95.064328

    Article  ADS  Google Scholar 

  109. R. P. de Groote, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. D. Goodacre, G. J. Farooq-Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo, R. F. G. Ruiz, W. Gins, J. D. Holt, Á. Koszorús, K. M. Lynch, T. Miyagi, W. Nazarewicz, G. Neyens, P.-G. Reinhard, S. Rothe, H. H. Stroke, A. R. Vernon, K. D. A. Wendt, S. G. Wilkins, Z. Y. Xu, X. F. Yang, Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes, Nat. Phys. 16, 620–624 (2020). https://doi.org/10.1038/s41567-020-0868-y

  110. M. Borrajo, J.L. Egido, Ground-state properties of even and odd magnesium isotopes in a symmetry-conserving approach. Physics Letters B 764, 328–334 (2017) https://doi.org/10.1016/j.physletb.2016.11.037www.sciencedirect.com/science/article/pii/S0370269316307006

  111. L. Vietze, P. Klos, J. Menéndez, W.C. Haxton, A. Schwenk, Nuclear structure aspects of spin-independent wimp scattering off xenon. Phys. Rev. D 91, 043520 (2015). https://doi.org/10.1103/PhysRevD.91.043520

    Article  ADS  Google Scholar 

  112. T. Duguet, H. Hergert, J.D. Holt, V. Somà, Nonobservable nature of the nuclear shell structure: Meaning, illustrations, and consequences. Phys. Rev. C 92, 034313 (2015). https://doi.org/10.1103/PhysRevC.92.034313

  113. J.L. Egido, M. Borrajo, T.R. Rodríguez, Collective and single-particle motion in beyond mean field approaches. Phys. Rev. Lett. 116, 052502 (2016). https://doi.org/10.1103/PhysRevLett.116.052502

    Article  ADS  Google Scholar 

  114. Y. Sun, A. Aprahamian, J.-Y. Zhang, C.-T. Lee, Nature of excited \({0}^{+}\) states in \(^{158}\rm Gd \) described by the projected shell model. Phys. Rev. C 68, 061301 (2003). https://doi.org/10.1103/PhysRevC.68.061301

    Article  ADS  Google Scholar 

  115. Guillaume Scamps, Stephane Goriely, Erik Olsen, Michael Bender, Wouter Ryssens, Skyrme-Hartree-Fock-Bogoliubov mass models on a 3d mesh: effect of triaxial shape. Eur. Phys. J. A 57(12), 333 (2021). https://doi.org/10.1140/epja/s10050-021-00642-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jean-Yves Ollitrault for useful discussions and Vittorio Somà for proofreading the manuscript. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839847. M. B. acknowledges support by the Agence Nationale de la Recherche, France, Grant No. 19-CE31-0015-01 (NEWFUN). G.G. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster), within the Collaborative Research Center SFB1225 (ISOQUANT, Project-ID 273811115). The calculations were performed by using HPC resources from GENCI-TGCC, France (Contract No. A0110513012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bally.

Additional information

Communicated by Denis Lacroix.

Expressions for the matrix elements of \({\hat{E}}^{(n)}_2\)

Expressions for the matrix elements of \({\hat{E}}^{(n)}_2\)

Let us first define the electric quadrupole operator \({\hat{E}}_2\) as the rank-2 tensor with components

$$\begin{aligned} {\hat{E}}_{2\mu } = \sum _{i=1}^{A} {\hat{e}}_i \, {\hat{r}}_i^2 \, Y_{2\mu } ({\hat{\theta }}_i, {\hat{\phi }}_i), \end{aligned}$$
(24)

where \(\mu \in \llbracket -2, 2 \rrbracket \), \({\hat{e}}_i\) and (\({\hat{r}}_i, {\hat{\theta }}_i, {\hat{\phi }}_i\)) are the electric charge and spherical coordinates of the i-th particle, respectively, and \(Y_{2\mu }\) are the usual spherical harmonics.

When considering the electric quadrupole moments of a classical ellipsoid, the finite sum of the above quantum mechanical operator is replaced by an integral over the volume of the ellipsoid and the charge operator by a charge density [4].

In the present work, we consider for the products \({\hat{E}}^{(n)}_2\) the standard expressions given in the literature [6, 77]

$$\begin{aligned} {\hat{E}}^{(2)}_2&= \left[ {\hat{E}}_2 \times {\hat{E}}_2 \right] _0 , \end{aligned}$$
(25)
$$\begin{aligned} {\hat{E}}^{(3)}_2&= \left[ \left[ {\hat{E}}_2 \times {\hat{E}}_2 \right] _2 \times {\hat{E}}_2 \right] _0 , \end{aligned}$$
(26)
$$\begin{aligned} {\hat{E}}^{(4)}_2&= \left[ {\hat{E}}^{(2)}_2 \times {\hat{E}}^{(2)}_2 \right] _0 = {\hat{E}}^{(2)}_2 {\hat{E}}^{(2)}_2 , \end{aligned}$$
(27)
$$\begin{aligned} {\hat{E}}^{(5)}_2&= \left[ {\hat{E}}^{(2)}_2 \times {\hat{E}}^{(3)}_2 \right] _0 ={\hat{E}}^{(2)}_2 {\hat{E}}^{(3)}_2 , \end{aligned}$$
(28)
$$\begin{aligned} {\hat{E}}^{(6)}_2&= \left[ {\hat{E}}^{(3)}_2 \times {\hat{E}}^{(3)}_2 \right] _0 = {\hat{E}}^{(3)}_2 {\hat{E}}^{(3)}_2 . \end{aligned}$$
(29)

With these definitions, by inserting the identity operator \(\sum _{\varGamma ,\sigma } |\varPsi ^\varGamma _\sigma \rangle \langle \varPsi ^\varGamma _\sigma |\) between subparts of the operators coupled to zero angular momentum as well as using the expressions of matrix elements of irreducible tensor products [78], we obtain

$$\begin{aligned} \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(2)}_2|\varPsi ^\varGamma _\sigma \rangle&= \frac{1}{\sqrt{5}(2J+1)} \sum _{J_1 \sigma _1} (-1)^{-J+J_1} \nonumber \\&\times \langle \varPsi ^{\varGamma }_{\sigma }||{\hat{E}}_2||\varPsi ^{\varGamma _1}_{\sigma _1}\rangle \langle \varPsi ^{\varGamma _1}_{\sigma _1}||{\hat{E}}_2||\varPsi ^{\varGamma }_{\sigma }\rangle , \end{aligned}$$
(30)
$$\begin{aligned} \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(3)}_2|\varPsi ^\varGamma _\sigma \rangle&= \frac{(-1)^{2J}}{(2J+1)} \sum _{J_1 \sigma _1} \sum _{J_2 \sigma _2} \left\{ \begin{array}{ccc} 2 &{} 2 &{} 2 \\ J_2 &{} J &{} J_1 \end{array}\right\} \nonumber \\&\times \langle \varPsi ^{\varGamma }_{\sigma }||{\hat{E}}_2||\varPsi ^{\varGamma _1}_{\sigma _1}\rangle \langle \varPsi ^{\varGamma _1}_{\sigma _1}||{\hat{E}}_2||\varPsi ^{\varGamma _2}_{\sigma _2}\rangle \nonumber \\&\times \langle \varPsi ^{\varGamma _2}_{\sigma _2}||{\hat{E}}_2||\varPsi ^{\varGamma }_{\sigma }\rangle , \end{aligned}$$
(31)
$$\begin{aligned} \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(4)}_2|\varPsi ^\varGamma _\sigma \rangle&= \sum _{\sigma _1} | \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(2)}_2|\varPsi ^\varGamma _{\sigma _1}\rangle |^2 ,\end{aligned}$$
(32)
$$\begin{aligned} \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(5)}_2|\varPsi ^\varGamma _\sigma \rangle&= \sum _{\sigma _1} \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(2)}_2|\varPsi ^\varGamma _{\sigma _1}\rangle \langle \varPsi ^\varGamma _{\sigma _1}|{\hat{E}}^{(3)}_2|\varPsi ^\varGamma _{\sigma }\rangle , \end{aligned}$$
(33)
$$\begin{aligned} \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(6)}_2|\varPsi ^\varGamma _\sigma \rangle&= \sum _{\sigma _1} | \langle \varPsi ^\varGamma _\sigma |{\hat{E}}^{(3)}_2|\varPsi ^\varGamma _{\sigma _1}\rangle |^2 , \end{aligned}$$
(34)

where we have used the shorthand notation \(\varGamma _i \equiv (J_i MNZ\pi )\) for the set of quantum numbers that differ only by their angular momentum and the fact that the eletric quadrupole operator does neither change the parity nor the number of particles of the system such that \(\sum _{\varGamma _i} \rightarrow \sum _{J_i}\). The expressions (3034) are of course equalities only when summing over all possible states with relevant combinations of quantum numbers. In practice, however, one is limited to a finite set of states such that the Kumar deformation parameters determined from these sums have some truncation error.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bally, B., Giacalone, G. & Bender, M. Structure of \(^{128,129,130}\)Xe through multi-reference energy density functional calculations. Eur. Phys. J. A 58, 187 (2022). https://doi.org/10.1140/epja/s10050-022-00833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00833-4

Navigation