Skip to main content
Log in

Higgs boson decay to the pair of S- and P-wave \(B_c\) mesons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate rare production of the pair of S- and P-wave \(B_c\)-meson in the Higgs boson decay in the perturbative Standard Model and relativistic quark model. Relativistic amplitudes and decay widths are constructed with the account of the relative motion of heavy quarks forming \(B_c\) mesons. When constructing the Higgs boson decay amplitudes, the method of projection operators on the S- and P-wave states of quarks is used. Relativistic corrections are expressed in terms of special relativistic parameters and are calculated numerically in the quark model. The dependence of the decay widths of the Higgs boson on various sources of relativistic corrections is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. G. Aad et al., The ATLAS Collaboration. Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  2. S. Chartchyan et al., The CMS Collaboration. Phys. Lett. B 716, 30 (2012)

    ADS  Google Scholar 

  3. W.J. Keung, Phys. Rev. D 27, 2762 (1983)

    Article  ADS  Google Scholar 

  4. M.A. Shifman, M.I. Vysotsky, Nucl. Phys. B 186, 475 (1981)

    Article  ADS  Google Scholar 

  5. G.T. Bodwin, H.S. Chung, J.-H. Ee, J. Lee, F. Petriello, Phys. Rev. D 90, 113010 (2014)

    Article  ADS  Google Scholar 

  6. V. Kartvelishvili, A.V. Luchinsky, A.A. Novoselov, Phys. Rev. D 79, 114015 (2009)

    Article  ADS  Google Scholar 

  7. J. Jiang, C.-F. Qiao, Phys. Rev. D 93, 054031 (2016)

    Article  ADS  Google Scholar 

  8. J.-J. Niu, L. Guo, H.-H. Ma, X.-G. Wu, Eur. Phys. J. C 79, 339 (2019)

    Article  ADS  Google Scholar 

  9. A.L. Kataev, V.T. Kim, Mod. Phys. Lett. A 9, 1309 (1994)

    Article  ADS  Google Scholar 

  10. I.N. Belov, A.V. Berezhnoy, A.E. Dorokhov et al., Nucl. Phys. A 1015, 122285 (2021)

    Article  Google Scholar 

  11. A.E. Dorokhov, R.N. Faustov, A.P. Martynenko, F.A. Martynenko, Phys. Rev. D 102, 016027 (2020)

    Article  ADS  Google Scholar 

  12. E.N. Elekina, A.P. Martynenko, Phys. Rev. D 81, 054006 (2010)

    Article  ADS  Google Scholar 

  13. A.P. Martynenko, A.M. Trunin, Phys. Rev. D 86, 094003 (2012)

    Article  ADS  Google Scholar 

  14. A.P. Martynenko, A.M. Trunin, Eur. Phys. J. C 75, 138 (2015)

    Article  ADS  Google Scholar 

  15. N. Brambilla, S. Eidelman, B.K. Heltsley et al., Eur. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  16. G. Aad et al., The ATLAS Collaboration. Phys. Rev. D 90, 112015 (2014)

    Article  ADS  Google Scholar 

  17. G. Aad et al., The ATLAS Collaboration. JHEP 08, 137 (2015)

    Article  ADS  Google Scholar 

  18. A.M. Sirunyan et al., The CMS Collaboration. Phys. Rev. Lett. B 797, 121801 (2018)

    Article  ADS  Google Scholar 

  19. S. Chatrchyan et al., The CMS Collaboration. JHEP 05, 104 (2014)

    Article  ADS  Google Scholar 

  20. A.M. Sirunyan et al., The CMS Collaboration. Phys. Lett. B 797, 134811 (2019)

    Article  Google Scholar 

  21. A.V. Berezhnoy, I.N. Belov, A.K. Likhoded, A.V. Luchinsky, Mod. Phys. Lett. A 34, 40 (2019)

    Article  Google Scholar 

  22. A.V. Berezhnoy, A.P. Martynenko, F.A. Martynenko, O.S. Sukhorukova, Nucl. Phys. A 986, 34 (2019)

    Article  ADS  Google Scholar 

  23. A.A. Karyasov, A.P. Martynenko, F.A. Martynenko, Nucl. Phys. B 911, 36 (2016)

    Article  ADS  Google Scholar 

  24. G.T. Bodwin, A. Petrelli, Phys. Rev. D 66, 094011 (2002)

    Article  ADS  Google Scholar 

  25. S.J. Brodsky, J.R. Primack, Ann. Phys. 52, 315 (1969)

    Article  ADS  Google Scholar 

  26. R.N. Faustov, Ann. Phys. 78, 176 (1973)

    Article  ADS  Google Scholar 

  27. J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, Comput. Phys. Commun. 184, 1453 (2013)

    Article  ADS  Google Scholar 

  28. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995)

    Article  ADS  Google Scholar 

  29. S.N. Gupta, S.F. Radford, W.W. Repko, Phys. Rev. D 26, 3305 (1982)

  30. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005)

  31. S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)

    Article  ADS  Google Scholar 

  32. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  33. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Usp. 38, 1 (1995)

    Article  ADS  Google Scholar 

  34. S. Godfrey, Phys. Rev. D 70, 054017 (2004)

    Article  ADS  Google Scholar 

  35. W. Lucha, F.F. Schöberl, Phys. Rev. A 51, 4419 (1995)

    Article  ADS  Google Scholar 

  36. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003)

    Article  ADS  Google Scholar 

  37. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 71, 1825 (2011)

    Article  ADS  Google Scholar 

  38. D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Atom. Nucl. 68, 784 (2005)

    Article  ADS  Google Scholar 

  39. S.F. Radford, W.W. Repko, Phys. Rev. D 75, 074031 (2007)

    Article  ADS  Google Scholar 

  40. S.N. Gupta, Phys. Rev. D 35, 1736 (1987)

    Article  ADS  Google Scholar 

  41. S.N. Gupta, J.M. Johnson, W.W. Repko, C.J. Suchyta, Phys. Rev. D 49, 1551 (1994)

    Article  ADS  Google Scholar 

  42. S.F. Radford, W.W. Repko, M.J. Saelim, J. Phys. Rev. D 80, 034012 (2009)

    Article  ADS  Google Scholar 

  43. W. Lucha, F.F. Schöberl, D. Gromes, Phys. Rep. 200(4), 127 (1991)

    Article  ADS  Google Scholar 

  44. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997)

    Article  ADS  Google Scholar 

  45. W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999)

    Article  ADS  Google Scholar 

  46. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  47. J. de Blas, R. Franceschini, F. Riva, P. Roloff, U. Schnoor et al., CERN Yellow Report Monograph. Vol. 3 (2018). arXiv:1812.02093 [hep-ph]

  48. R. Contino, D. Curtin, A. Katz, M.L. Mangano, G. Panico et al., CERN Yellow Rep. 3, 255–440 (2017). arXiv:1606.09408 [hep-ph]

    Google Scholar 

  49. V. K. Khersonsky, E. V. Orlenko, D. A. Varshalovich, Quantum Theory of Angular Momentum and Its Applications. Vol.2. (M. Nauka, 2017)

Download references

Acknowledgements

The authors are grateful to I. N. Belov, A. V. Berezhnoy, D. Ebert, V. O. Galkin, A. L. Kataev, A. K. Likhoded for a helpful discussion of various issues related to the production of heavy quarkonia. The work of F. A. Martynenko is supported by the Foundation for the Advancement of Theoretical Physics and Mathematics ”BASIS” (Grant No. 19-1-5-67-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Martynenko.

Additional information

Communicated by E. Oset.

Appendices

Appendix A: Explicit form of the functions \(f_i\), \(\tilde{f}_i\), \(g_i\), \(\tilde{g}_i\) entering the Higgs boson decay widths (30)–(34)

The functions presented here are expressed in terms of mass ratios: \(\tilde{r}_1=m_1/M\), \(\tilde{r}_2=m_2/M\), \(r_5=M_2/M\), \(r_6=M_1/M\), \(r_3=M_H/\sqrt{M_1M_2}\).

$$\begin{aligned}&f_1=- \frac{3}{4}r_6 + \frac{9}{4}r_5 + \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{9}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 + 3\tilde{r}_1 \nonumber \\&\quad - \frac{3}{2}\tilde{r}_1^2\tilde{r}_2^{-1} - \frac{3}{4}\rho _1r_5 \nonumber \\&\quad - \frac{3}{4}\rho _1\tilde{r}_1\tilde{r}_2^{-1}r_5 + \frac{3}{4}\eta _1r_6- \frac{3}{4}\eta _1\tilde{r}_1\tilde{r}_2^{-1}r_6, \end{aligned}$$
(A1)
$$\begin{aligned}&g_1= \tilde{\omega }_{\frac{1}{2}\frac{1}{2}}\left( \frac{3}{2}\tilde{r}_1 \right) +\tilde{\omega }_{01} \biggl (- \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{9}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 \nonumber \\&\quad + \frac{3}{2}\tilde{r}_1^2\tilde{r}_2^{-1} + \frac{3}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 + \frac{3}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ) \nonumber \\&\quad +\tilde{\omega }_{10} \biggl ( \frac{3}{4}r_6 - \frac{9}{4}r_5 - \frac{3}{2}\tilde{r}_1 - \frac{3}{4}\tilde{r}_1r_6 + \frac{3}{4}\tilde{r}_1r_5 \biggr ) \nonumber \\&\quad +\omega _{\frac{1}{2}\frac{1}{2}}( 3\tilde{r}_1 )+\omega _{\frac{1}{2}\frac{1}{2}} \tilde{\omega }_{01}(- \frac{3}{2}\tilde{r}_1 )+ \omega _{\frac{1}{2}\frac{1}{2}}\tilde{\omega }_{10} (- \tilde{r}_1 ) \nonumber \\&\quad +\omega _{01}\biggl (- \frac{1}{4}r_6 + \frac{3}{4}r_5 - \tilde{r}_1 + \frac{1}{4}\tilde{r}_1r_6 - \frac{1}{4}\tilde{r}_1r_5 \biggr )\nonumber \\&\quad +\omega _{01}\tilde{\omega }_{01}\biggl (\frac{1}{4}r_6-\frac{3}{4}r_5 + \tilde{r}_1 -\frac{1}{4}\tilde{r}_1r_6 + \frac{1}{4}\tilde{r}_1r_5 \biggr ) \nonumber \\&\quad +\omega _{10}\biggl ( \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 \nonumber \\&\quad - \frac{3}{2}\tilde{r}_1 - \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 - \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ) \nonumber \\&\quad +\omega _{10}\tilde{\omega }_{01} \biggl ( \frac{1}{2}\tilde{r}_1 \biggr )+\omega _{10}\tilde{\omega }_{10} \biggl (- \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 \nonumber \\&\quad + \frac{3}{2}\tilde{r}_1+ \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ), \end{aligned}$$
(A2)
$$\begin{aligned}&f_2=\frac{3}{4}r_6 - \frac{1}{4}r_5 - \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 - \tilde{r}_1\nonumber \\&\quad + \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1} + \frac{1}{4}\rho _1r_5 + \frac{1}{4}\rho _1\tilde{r}_1\tilde{r}_2^{-1}r_5 - \frac{1}{4}\eta _1r_6 \nonumber \\&\quad + \frac{1}{4}\eta _1\tilde{r}_1\tilde{r}_2^{-1}r_6, \end{aligned}$$
(A3)
$$\begin{aligned}&g_2=\tilde{\omega }_{\frac{1}{2}\frac{1}{2}}\left( - \frac{1}{2}\tilde{r}_1 \right) + \tilde{\omega }_{01}\biggl ( \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5\nonumber \\&\quad - \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}- \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 - \frac{1}{4} \tilde{r}_1^2\tilde{r}_2^{-1}r_5\biggr ) \nonumber \\&\quad + \tilde{\omega }_{10}\biggl (- \frac{3}{4}r_6 + \frac{1}{4}r_5 + \frac{1}{2}r_1 + \frac{1}{4}\tilde{r}_1r_6 - \frac{1}{4}\tilde{r}_1r_5\biggr ) + \omega _{\frac{1}{2}\frac{1}{2}} ( \tilde{r}_1 ) \nonumber \\&+ \omega _{\frac{1}{2}\frac{1}{2}}\tilde{\omega }_{01} \biggl ( \frac{1}{2}\tilde{r}_1\biggr ) + \omega _{\frac{1}{2}\frac{1}{2}}\tilde{\omega }_{10} (- \tilde{r}_1 )\nonumber \\&\quad + \omega _{01}\left( - \frac{3}{4}r_6 + \frac{1}{4} \right. \left. r_5 - \tilde{r}_1 + \frac{1}{4}\tilde{r}_1r_6 -\frac{1}{4}\tilde{r}_1r_5 \right) \nonumber \\&\quad + \omega _{01}\tilde{\omega }_{01}\left( \frac{3}{4}r_6 -\frac{1}{4}r_5 + \tilde{r}_1- \frac{1}{4}\tilde{r}_1r_6 + \frac{1}{4}\tilde{r}_1r_5 \right) \nonumber \\&\quad + \omega _{10}\biggl (\frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 + \frac{1}{2}\tilde{r}_1 - \frac{1}{4} \tilde{r}_1^2\tilde{r}_2^{-1}r_6 \nonumber \\&\quad - \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ) + \omega _{10}\tilde{\omega }_{01}\left( \frac{1}{2}\tilde{r}_1 \right) + \omega _{10}\tilde{\omega }_{10}\biggl (-\frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 \nonumber \\&\quad - \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 - \frac{1}{2}\tilde{r}_1+ \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ), \end{aligned}$$
(A4)
$$\begin{aligned}&f_3=- \frac{1}{4}r_6 - \frac{1}{4}r_5 - \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 ), \end{aligned}$$
(A5)
$$\begin{aligned}&g_3=\tilde{\omega }_{01} \left( \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 \right) \nonumber \\&\quad +\tilde{\omega }_{10} \left( \frac{1}{4}r_6 + \frac{1}{4}r_5 \right) + \omega _{01} \left( - \frac{1}{12}r_6 - \frac{1}{12}r_5 \right) \nonumber \\&\quad + \omega _{01}\tilde{\omega }_{01}\left( \frac{1}{12}r_6 + \frac{1}{12}r_5 \right) \nonumber \\&\quad + \omega _{10} \left( -\frac{1}{12}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{12}\tilde{r}_1\tilde{r}_2^{-1}r_5 \right) \nonumber \\&\quad + \omega _{10}\tilde{\omega }_{10} \left( \frac{1}{12}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{1}{12}\tilde{r}_1\tilde{r}_2^{-1}r_5\right) , \end{aligned}$$
(A6)
$$\begin{aligned}&f_4= \frac{3}{4}r_6 - \frac{1}{4}r_5 - \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 - \tilde{r}_1\nonumber \\&\quad + \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1} + \frac{1}{4}\rho _1r_5 + \frac{1}{4}\rho _1\tilde{r}_1\tilde{r}_2^{-1}r_5 - \frac{1}{4}\eta _1r_6\nonumber \\&\quad + \frac{1}{4}\eta _1\tilde{r}_1\tilde{r}_2^{-1}r_6, \end{aligned}$$
(A7)
$$\begin{aligned}&g_4=\tilde{\omega }_{\frac{1}{2}\frac{1}{2}} \left( - \frac{1}{2}\tilde{r}_1 \right) + \tilde{\omega }_{01}\biggl ( \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 \nonumber \\&\quad - \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}- \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 - \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ) \nonumber \\&\quad +\tilde{\omega }_{10}\left( - \frac{3}{4}r_6 + \frac{1}{4}r_5 + \frac{1}{2}\tilde{r}_1 + \frac{1}{4}\tilde{r}_1r_6 - \frac{1}{4}\tilde{r}_1r_5 \right) \nonumber \\&\quad + \omega _{\frac{1}{2}\frac{1}{2}} ( \tilde{r}_1 )+ \omega _{\frac{1}{2}\frac{1}{2}}\tilde{\omega }_{01}( \frac{1}{2}\tilde{r}_1 ) + \omega _{\frac{1}{2}\frac{1}{2}}\tilde{\omega }_{10}( - \tilde{r}_1 ) \nonumber \\&\quad + \omega _{01}\biggl ( - \frac{3}{4}r_6 + \frac{1}{4}r_5 - \tilde{r}_1 + \frac{1}{4}\tilde{r}_1r_6 - \frac{1}{4}\tilde{r}_1r_5 \biggr )\nonumber \\&\quad + \omega _{01}\tilde{\omega }_{01} \left( \frac{3}{4}r_6 - \frac{1}{4}r_5 + \tilde{r}_1 - \frac{1}{4}\tilde{r}_1r_6 + \frac{1}{4}\tilde{r}_1r_5 \right) \nonumber \\&\quad +\omega _{10}\biggl ( \frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 + \frac{1}{2}r_1 - \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 \nonumber \\&\quad - \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ) + \omega _{10}\tilde{\omega }_{01} \left( \frac{1}{2}\tilde{r}_1 \right) \nonumber \\&\quad + \omega _{10}\tilde{\omega }_{10}\biggl (-\frac{3}{4}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{1}{4}\tilde{r}_1\tilde{r}_2^{-1}r_5 - \frac{1}{2}\tilde{r}_1\nonumber \\&\quad + \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 + \frac{1}{4}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ), \end{aligned}$$
(A8)
$$\begin{aligned}&f_5=- \frac{3}{2}r_6 + \frac{1}{2}r_5 - \frac{3}{2}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{1}{2}\tilde{r}_1\tilde{r}_2^{-1}r_5 + 2r_1 \nonumber \\&\quad + \tilde{r}_1^2\tilde{r}_2^{-1} - \frac{1}{2}\rho _1r_5 + \frac{1}{2}\rho _1\tilde{r}_1\tilde{r}_2^{-1}r_5 + \frac{1}{2}\eta _1r_6 \nonumber \\&\quad + \frac{1}{2}\eta _1\tilde{r}_1\tilde{r}_2^{-1}r_6, \end{aligned}$$
(A9)
$$\begin{aligned}&g_5= \tilde{\omega }_{\frac{1}{2}\frac{1}{2}} (- \tilde{r}_1 ) + \tilde{\omega }_{01}\biggl ( \frac{3}{2}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{2}\tilde{r}_1 \tilde{r}_2^{-1}r_5 \nonumber \\&\quad - \tilde{r}_1^2\tilde{r}_2^{-1} - \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 - \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ) \nonumber \\&\quad + \tilde{\omega }_{10} \left( \frac{3}{2}r_6 - \frac{1}{2}r_5 - \tilde{r}_1 - \frac{1}{2}\tilde{r}_1r_6 + \frac{1}{2}\tilde{r}_1r_5 \right) + \omega _{\frac{1}{2}\frac{1}{2}} ( - 4\tilde{r}_1 )\nonumber \\&\quad + \omega _{\frac{1}{2}\frac{1}{2}}\tilde{\omega }_{01}( \tilde{r}_1 ) + \omega _{\frac{1}{2}\frac{1}{2}}\tilde{\omega }_{10}( 2\tilde{r}_1 ) \nonumber \\&\quad + \omega _{01} ( - \frac{3}{2}r_6 + \frac{1}{2}r_5 - 2\tilde{r}_1 + \frac{1}{2}\tilde{r}_1r_6 - \frac{1}{2}\tilde{r}_1r_5 ) \nonumber \\&\quad + \omega _{01} \tilde{\omega }_{01} \left( \frac{3}{2}r_6 - \frac{1}{2}r_5 + 2\tilde{r}_1 - \frac{1}{2}\tilde{r}_1r_6 + \frac{1}{2}\tilde{r}_1 r_5 \right) + \nonumber \\&\quad \omega _{10} \biggl ( - \frac{3}{2}\tilde{r}_1\tilde{r}_2^{-1}r_6 - \frac{1}{2}\tilde{r}_1\tilde{r}_2^{-1}r_5 - r_1 \nonumber \\&\quad + \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 + \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ) + \omega _{10}\tilde{\omega }_{01} ( \tilde{r}_1 ) \nonumber \\&\quad + \omega _{10}\tilde{\omega }_{10}\biggl ( \frac{3}{2}\tilde{r}_1\tilde{r}_2^{-1}r_6 + \frac{1}{2}\tilde{r}_1\tilde{r}_2^{-1}r_5 \nonumber \\&\quad + \tilde{r}_1 - \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}r_6 - \frac{1}{2}\tilde{r}_1^2\tilde{r}_2^{-1}r_5 \biggr ). \end{aligned}$$
(A10)

The functions \(\tilde{f}_i\), \(\tilde{g}_i\) can be obtained from \(f_i\), \(g_i\) as a result of the replacement \(\tilde{r}_1\leftrightarrow \tilde{r}_2\), \(\tilde{\omega }_{ij}\leftrightarrow \tilde{\omega }_{ji}\).

Appendix B: The construction of an effective Hamiltonian

Using potential (33), we construct an effective model of the quark interaction of the Schrödinger-type and calculate the relativistic parameters included in the decay widths. The first step in the construction of the model is related to the rationalization of the kinetic energy operator as follows:

$$\begin{aligned}&T=\sqrt{\mathbf{p}^2+m_1^2}-m_1+\sqrt{\mathbf{p}^2+m_2^2}-m_2\nonumber \\&\quad = \frac{\mathbf{p}^2}{\sqrt{\mathbf{p}^2 +m_1^2}+m_1}+\frac{\mathbf{p}^2}{\sqrt{\mathbf{p}^2+m_2^2}+m_2} \nonumber \\&\quad \approx \frac{\mathbf{p}^2}{E_1+m_1}+\frac{\mathbf{p}^2}{E_2+m_2} \quad = \frac{\mathbf{p}^2}{2\tilde{m}_1}\nonumber \\&\quad \qquad \qquad \qquad \qquad +\frac{\mathbf{p}^2}{2\tilde{m}_2}=\frac{\mathbf{p}^2}{2\tilde{\mu }}, \end{aligned}$$
(B1)

where we change relativistic particle energies \(\varepsilon _{1,2}(\mathbf{p})\) by their effective values \(E_{1,2}\) so that \(M_{B_c}=E_1+E_2\) or what is the same \(\mathbf{p}^2\rightarrow \mathbf{p}^2_{eff}\). The effective quark masses \(\tilde{m}_{1,2}\) are used further in the program for the numerical solution of the Schrödinger equation. \(\mathbf{p}^2_{eff}\) should be considered as a new parameter which effectively accounts for relativistic corrections.

Another part of the relativistic corrections in the Breit Hamiltonian is determined by the term:

$$\begin{aligned} \Delta \tilde{U}=-\frac{2\alpha _s}{3m_1m_2r}\left[ \mathbf{p}^2-\frac{d^2}{dr^2}\right] . \end{aligned}$$
(B2)

In order to replace it by the effective term containing the power-like potentials, we use the approximate bound state wave functions which can be written for S- and P-wave states as follows:

$$\begin{aligned} \Psi _{{\mathcal {S}}}(\mathbf{r})= & {} \frac{\beta ^{3/2}}{\pi ^{3/4}}e^{-\frac{1}{2}\beta ^2r^2},~~ \Psi _{{\mathcal {P}}}(\mathbf{r})\nonumber \\= & {} \sqrt{\frac{8}{3}}\frac{\beta ^{3/2}}{\pi ^{3/4}}\beta re^{-\frac{1}{2}\beta ^2r^2}Y_{1m}(\theta ,\phi ). \end{aligned}$$
(B3)

The parameter \(\beta \) entering here is chosen in such a way that the calculated value of \(R_S(0)\) and \(R'_P(0)\) is obtained. The operator \(\mathbf{p}^2\) is changed by its nonrelativistic expression: \(\mathbf{p}^2=2\mu \left( E_{nr}+\frac{4\alpha _s}{3r}-Ar-B\right) \), where nonrelativistic energy \(E_{nr}\) is obtained by the numerical solution of the Schrödinger equation in the nonrelativistic approximation.

In the case of S-wave states it is necessary to change the \(\delta \)-like term of the potential by known smeared \(\delta \)-function of the Gaussian form:

$$\begin{aligned} \tilde{\delta }(\mathbf{r})=\frac{b^3}{\pi ^{3/2}}e^{-b^2r^2} \end{aligned}$$
(B4)

with the additional parameter b which defines the hyperfine splitting in the \((b{\bar{c}})\) system.

The second step in constructing an effective model of quark interaction is connected with the angular averaging of the spin-orbit and spin-spin terms. This averaging is performed separately for the considered S- and P-states [49]. In this case, we use a basis transformation of the following form:

$$\begin{aligned} \Psi _{SLFM_F}= & {} \sum _{J}(-1)^{s_1+s_2+L+F}\sqrt{(2S+1)(2J+1)}\nonumber \\&\quad \times \Biggl \{ \begin{array}{ccc} L&{}~s_1&{}~J\\ s_2&{}~F&{}~S \end{array} \Biggr \}\Psi _{Js_2FM_F}, \end{aligned}$$
(B5)

where \(\mathbf{J}=\mathbf{L}+\mathbf{s_1}\) is the total nomentum of quark 1, \(\mathbf{S}=\mathbf{s}_1+\mathbf{s}_2\), \(\mathbf{F}=\mathbf{S}+\mathbf{L}=\mathbf{J}+\mathbf{s}_2\). For diagonal matrix elements we have the expression:

$$\begin{aligned}&<Js_2FM_F|[(\mathbf{L}{} \mathbf{s}_2)+3(\mathbf{s}_1\mathbf{n})(\mathbf{s}_2\mathbf{n})-(\mathbf{s}_1\mathbf{s}_2)]|Js_2FM_F>\nonumber \\&\quad = \frac{L(L+1)}{J(J+1)}[F(F+1)-J(J+1)-s_2(s_2+1)]. \end{aligned}$$
(B6)

The matrix elements of the spin-orbit \(T_1=\mathbf{L}{} \mathbf{s}_2\) and spin-spin interactions \(T_2=3(\mathbf{s}_1\mathbf{n})(\mathbf{s}_2\mathbf{n})-(\mathbf{s}_1\mathbf{s}_2)\) off-diagonal in J with \(F=1\) are determined as follows:

$$\begin{aligned}&<J's_2FM_F|T_1|Js_2FM_F>\nonumber \\&\quad = (-1)^{-J-F-s_2+L+3/2+J'}\sqrt{(2J'+1)(2J+1)} \nonumber \\&\quad \times \sqrt{(2s_2+1)(s_2+1)s_2(2L+1)(L+1)L} \Biggl \{ \begin{array}{ccc} J&{}~s_2&{}~F\\ s_2&{}~J'&{}~1 \end{array} \Biggr \}\nonumber \\&\quad \times \Biggl \{ \begin{array}{ccc} L&{}~J'&{}~1/2\\ J&{}~L&{}~1 \end{array} \Biggr \}. \end{aligned}$$
(B7)

As a result \(<J's_2FM_F|T_1|Js_2FM_F>=2<J's_2FM_F|T_2|Js_2FM_F>=-\frac{\sqrt{2}}{3}\). After angular averaging an effective Hamiltonians are obtained describing the states \(^3S_1\), \(^1S_0\), \(^3P_J\), \(^1P_1\).

Finally, the third final step is related to the numerical solution of the Schrödinger equation with obtained effective Hamiltonians. We use a calculation program in the system Mathematica [45]. The obtained numerical results are presented in Table 1. They are in good agreement with previous calculations [33, 36, 37].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faustov, R.N., Martynenko, F.A. & Martynenko, A.P. Higgs boson decay to the pair of S- and P-wave \(B_c\) mesons. Eur. Phys. J. A 58, 4 (2022). https://doi.org/10.1140/epja/s10050-021-00660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00660-z

Navigation