Skip to main content

Advertisement

Log in

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

This article has been updated

Abstract

The modelling of nuclear reactions and radioactive decays in astrophysical or earth-based conditions requires detailed knowledge of the masses of essentially all nuclei. Microscopic mass models based on nuclear energy density functionals (EDFs) can be descriptive and used to provide this information. The concept of intrinsic symmetry breaking is central to the predictive power of EDF approaches, yet is generally not exploited to the utmost by mass models because of the computational demands of adjusting up to about two dozen parameters to thousands of nuclear masses. We report on a first step to bridge the gap between what is presently feasible for studies of individual nuclei and large-scale models: we present a new Skyrme-EDF-based model that was adjusted using a three-dimensional coordinate-space representation, for the first time allowing for both axial and triaxial deformations during the adjustment process. To compensate for the substantial increase in computational cost brought by the latter, we have employed a committee of multilayer neural networks to model the objective function in parameter space and guide us towards the overall best fit. The resulting mass model BSkG1 is computed with the EDF model independently of the neural network. It yields a root mean square (rms) deviation on the 2457 known masses of 741 keV and an rms deviation on the 884 measured charge radii of 0.024 fm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

Change history

  • 04 February 2022

    The original online version of this article was revised: The Supplementary Information was missing.

Notes

  1. Note the nomenclature of the mass model and the Skyrme interaction: each HFB-n mass model is associated with a Skyrme interaction BSkn. For the model we present here, we use the acronym BSkG1 to refer to both the mass model and the Skyrme interaction.

  2. With the exception of the Belyaev MOI, see Appendix B.

  3. Note that AME2020 [17] was not yet available at the time we constructed the model.

  4. To be precise: we employed as magic numbers 8,20,28,50,82 and 126 for both neutrons and protons.

  5. One could imagine more straightforward recipes to assign a collective score, such as the average of all modelled deviations, but we have found these to be not very reliable in early tests.

  6. The numbers under the square root in the denominator are the number of nuclear masses and the number of MOI included in the fit, respectively.

  7. Multipole moments of higher order were left unconstrained, such that the configurations were not necessarily entirely axially symmetric.

  8. While we cite only EDF-based examples, the same effect is present for projected mean-field calculations in shell-model valence spaces [154].

  9. The comparison of the MOI of triaxial configurations with experiment is not trivial, see Appendix B.

References

  1. M. Arnould, S. Goriely, Prog. Part. Nucl. Phys. 112, 103766 (2020)

    Article  Google Scholar 

  2. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)

    Article  ADS  Google Scholar 

  3. J. Erler et al., Nature 486, 509 (2012)

    Article  ADS  Google Scholar 

  4. R. Wang, L.-W. Chen, Phys. Rev. C 92, 031303(R) (2015)

    Article  ADS  Google Scholar 

  5. L. Neufcourt, Y. Cao, S.A. Giuliani, W. Nazarewicz, E. Olsen, O.B. Tarasov, Phys. Rev. C 101, 044307 (2020)

    Article  ADS  Google Scholar 

  6. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  7. P. Klüpfel, P.-G. Reinhard, T.J. Bürvenich, J.A. Maruhn, Phys. Rev. C 79, 034310 (2009)

    Article  ADS  Google Scholar 

  8. M. Baldo, L.M. Robledo, P. Schuck, X. Viñas, Phys. Rev. C 87, 064305 (2013)

    Article  ADS  Google Scholar 

  9. J. Erler, C.J. Horowitz, W. Nazarewicz, M. Rafalski, P.-G. Reinhard, Phys. Rev. C 87, 044320 (2013)

    Article  ADS  Google Scholar 

  10. M. Kortelainen et al., Phys. Rev. C 89, 054314 (2014)

    Article  ADS  Google Scholar 

  11. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 93, 034337 (2016)

    Article  ADS  Google Scholar 

  12. S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009)

    Article  ADS  Google Scholar 

  13. K. Bennaceur, J. Dobaczewski, T. Haverinen, M. Kortelainen, J. Phys. G Nucl. Part. Phys. 47, 105101 (2020)

    Article  ADS  Google Scholar 

  14. S. Goriely, R. Capote, Phys. Rev. C 89, 054318 (2014)

    Article  ADS  Google Scholar 

  15. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302(R) (2013)

    Article  ADS  Google Scholar 

  16. M. Wang et al., Chin. Phys. C 41, 3 (2017)

    Google Scholar 

  17. M. Wang et al., Chin. Phys. C 45, 3 (2021)

    Google Scholar 

  18. E. Verstraelen et al., Phys. Rev. C 100, 044321 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Ćwiok, P.-H. Heenen, W. Nazarewicz, Nature 433, 705 (2005)

    Article  ADS  Google Scholar 

  20. D. Baye, P.-H. Heenen, J. Phys. A. Math. Gen. 19, 2041 (1986)

    Article  ADS  Google Scholar 

  21. W. Ryssens, P.-H. Heenen, M. Bender, Phys. Rev. C 92, 064318 (2015)

    Article  ADS  Google Scholar 

  22. A. Arzhanov, T.R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. C 94, 054319 (2016)

    Article  ADS  Google Scholar 

  23. C. Simenel, A.S. Umar, Prog. Part. Nucl. Phys. 103, 19 (2018)

    Article  ADS  Google Scholar 

  24. G. Scamps, C. Simenel, Nature 564, 382 (2018)

    Article  ADS  Google Scholar 

  25. P. Magierski, P.-H. Heenen, Phys. Rev. C 65, 045804 (2002)

    Article  ADS  Google Scholar 

  26. P. Gögelein, H. Müther, Phys. Rev. C 76, 024312 (2007)

    Article  ADS  Google Scholar 

  27. H. Pais, W.G. Newton, J.R. Stone, Phys. Rev. C 90, 065802 (2014)

    Article  ADS  Google Scholar 

  28. B. Schuetrumpf, G. Martínez-Pinedo, Md. Afibuzzaman, H.M. Aktulga, Phys. Rev. C 100, 045806 (2019)

    Article  ADS  Google Scholar 

  29. T. Bayram, S. Akkoyun, Ş Şentürk, Phys. At. Nucl. 81, 288 (2018)

    Article  Google Scholar 

  30. R.-D. Lasseri, D. Regnier, J.-P. Ebran, A. Penon, Phys. Rev. Lett. 124, 162502 (2020)

    Article  ADS  Google Scholar 

  31. N. Schunck, J.D. McDonnell, D. Higdon, J. Sarich, S.M. Wild, Eur. Phys. J. A 51, 169 (2015)

    Article  ADS  Google Scholar 

  32. N. Schunck, K.R. Quinlan, J. Bernstein, J. Phys. G 47, 10 (2020)

    Google Scholar 

  33. Z.M. Niu, H.Z. Liang, Phys. Lett. B 778, 48 (2018)

    Article  ADS  Google Scholar 

  34. Z.M. Niu, H.Z. Liang, B.H. Sun, W.H. Long, Y.F. Niu, Phys. Rev. C 99, 064307 (2019)

    Article  ADS  Google Scholar 

  35. R. Bollapragada et al., J. Phys. G Nucl. Part. Phys. 48, 024001 (2021)

    Article  ADS  Google Scholar 

  36. L. Neufcourt, Y. Cao, W. Nazarewicz, F. Viens, Phys. Rev. C 98, 034318 (2018)

    Article  ADS  Google Scholar 

  37. L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, F. Viens, Phys. Rev. Lett. 122, 062502 (2019)

    Article  ADS  Google Scholar 

  38. L. Neufcourt, Y. Cao, S. Giuliani, W. Nazarewicz, E. Olsen, O.B. Tarasov, Phys. Rev. C 101, 014319 (2020)

    Article  ADS  Google Scholar 

  39. E. Yüksel, D. Soydaner, H. Bahtiyar, Int. J. Mod. Phys. E 30, 2150017 (2021)

    Article  ADS  Google Scholar 

  40. Z. Gao et al. arXiv:nucl-th2105.02445 (2021)

  41. J. Bartel et al., Nucl. Phys. A 386, 79 (1982)

    Article  ADS  Google Scholar 

  42. M.M. Sharma, G. Lalazissis, J. König, P. Ring, Phys. Rev. Lett. 74, 3744 (1995)

    Article  ADS  Google Scholar 

  43. P.-G. Reinhard, H. Flocard, Nucl. Phys. A 584, 467 (1995)

    Article  ADS  Google Scholar 

  44. M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Phys. Rev. C 82, 024313 (2010)

    Article  ADS  Google Scholar 

  45. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)

    Article  ADS  Google Scholar 

  46. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 643((E)), 441 (1998)

    Google Scholar 

  47. M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Phys. Rev. C 85, 024304 (2012)

    Article  ADS  Google Scholar 

  48. S.J. Krieger, P. Bonche, H. Flocard, P. Quentin, M.S. Weiss, Nucl. Phys. A 517, 275 (1990)

    Article  ADS  Google Scholar 

  49. B.A. Brown, W.A. Richter, R. Lindsay, Phys. Lett. B 483, 49 (2000)

    Article  ADS  Google Scholar 

  50. S. Goriely, J.M. Pearson, Phys. Rev. C 77, 031301(R) (2008)

    Article  ADS  Google Scholar 

  51. S.T. Belyaev, Nucl. Phys. 24, 322 (1961)

    Article  Google Scholar 

  52. S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C 75, 064312 (2007)

    Article  ADS  Google Scholar 

  53. D. Peña-Arteaga, S. Goriely, N. Chamel, Eur. Phys. J. A 52, 320 (2016)

    Article  ADS  Google Scholar 

  54. M. Bender, K. Rutz, P.-G. Reinhard, J. Maruhn, Eur. Phys. J. A 7, 467 (1999)

    Article  ADS  Google Scholar 

  55. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 024308 (2013)

    Article  ADS  Google Scholar 

  56. W. Ryssens, V. Hellemans, M. Bender, P.-H. Heenen, Comput. Phys. Commun. 187, 175 (2015)

    Article  ADS  Google Scholar 

  57. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984)

    Article  ADS  Google Scholar 

  58. J.W. Negele, Phys. Rev. C 1, 1260 (1970)

    Article  ADS  Google Scholar 

  59. I. Sick, Phys. Lett. B 576, 62 (2003)

    Article  ADS  Google Scholar 

  60. H. Chandra, G. Sauer, Phys. Rev. C 13, 245 (1976)

    Article  ADS  Google Scholar 

  61. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Book  Google Scholar 

  62. W. Ryssens, Symmetry breaking in nuclear mean-field models, Ph.D. thesis, Université Libre de Bruxelles (2016)

  63. W. Ryssens, M. Bender, P.-H. Heenen, MOCCa code (unpublished)

  64. W. Ryssens, M. Bender, P.-H. Heenen, Eur. Phys. J. A 55, 93 (2019)

    Article  ADS  Google Scholar 

  65. B. Gall, P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, Z. Phys. A 348, 183 (1994)

    Article  ADS  Google Scholar 

  66. P. Bonche, H. Flocard, P.-H. Heenen, Comput. Phys. Commun. 171, 49 (2005)

    Article  ADS  Google Scholar 

  67. D. Baye, Phys. Rep. 565, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  68. B.G. Carlsson, J. Dobaczewski, J. Toivanen, P. Veselý, Comput. Phys. Commun. 181, 1641 (2010)

    Article  ADS  Google Scholar 

  69. B. Bally, M. Bender, Phys. Rev. C 103, 024315 (2021)

    Article  ADS  Google Scholar 

  70. M. Bender et al., J. Phys. G Nucl. Part. Phys. 47, 113002 (2020)

    Article  Google Scholar 

  71. L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 054302 (2011)

    Article  ADS  Google Scholar 

  72. S.E. Agbemava, A.V. Afanasjev, P. Ring, Phys. Rev. C 93, 044304 (2016)

    Article  ADS  Google Scholar 

  73. Y. Cao, S.E. Agbemava, A.V. Afanasjev, W. Nazarewicz, E. Olsen, Phys. Rev. C 102, 024311 (2020)

    Article  ADS  Google Scholar 

  74. N. Schunck, J. Dobaczewski, J. McDonnell, J. More, W. Nazarewicz, J. Sarich, M.V. Stoitsov, Phys. Rev. C 81, 024316 (2010)

    Article  ADS  Google Scholar 

  75. K.J. Pototzky, J. Erler, P.-G. Reinhard, V.O. Nesterenko, Eur. Phys. J. A 46, 299 (2010)

    Article  ADS  Google Scholar 

  76. P. Möller, R. Bengtsson, B.G. Carlsson, P. Olivius, T. Ichikawa, Phys. Rev. Lett. 97, 162502 (2006)

    Article  ADS  Google Scholar 

  77. S. Perez-Martin, L.M. Robledo, Phys. Rev. C 78, 014304 (2008)

    Article  ADS  Google Scholar 

  78. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 58, 2126 (1998)

    Article  ADS  Google Scholar 

  79. T. Bürvenich, M. Bender, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 69, 014307 (2004)

    Article  ADS  Google Scholar 

  80. F. Chollet, Deep Learning with Python (Manning Publications, Shelter Island, 2017)

    Google Scholar 

  81. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 3rd International Conference on Learning Representations, ICLR (2015)

  82. R.H. Byrd, R.B. Schnabel, G.A. Shultz, Math. Prog. 40, 247 (1988)

    Article  Google Scholar 

  83. S. Goriely, N. Samyn, J.M. Pearson, Nucl. Phys. A 773, 279 (2006)

    Article  ADS  Google Scholar 

  84. J.Y. Zeng, T.H. Jin, Z.J. Zhao, Phys. Rev. C 50, 1388 (1994)

    Article  ADS  Google Scholar 

  85. A.V. Afanasjev, J. König, P. Ring, L.M. Robledo, J.L. Egido, Phys. Rev. C 62, 054306 (2000)

    Article  ADS  Google Scholar 

  86. J.M. Pearson, Y. Aboussir, A.K. Dutta, R.C. Nayak, M. Farine, F. Tondeur, Nucl. Phys. A 528, 1 (1991)

    Article  ADS  Google Scholar 

  87. G. Colò, N.V. Giai, J. Meyer, K. Bennaceur, P. Bonche, Phys. Rev. C 70, 024307 (2004)

    Article  ADS  Google Scholar 

  88. L.G. Cao, U. Lombardo, P. Schuck, Phys. Rev. C 74, 064301 (2006)

    Article  ADS  Google Scholar 

  89. W. Zuo, A. Lejeune, U. Lombardo, J.-F. Mathiot, Nucl. Phys. A 706, 418 (2002)

    Article  ADS  Google Scholar 

  90. J. Margueron, J. Navarro, N.V. Giai, Phys. Rev. C 66, 014303 (2002)

    Article  ADS  Google Scholar 

  91. N. Chamel, S. Goriely, Phys. Rev. C 82, 045804 (2010)

    Article  ADS  Google Scholar 

  92. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  93. P. Möller, J.R. Nix, At. Data Nucl. Data Tables 39, 213 (1988)

    Article  ADS  Google Scholar 

  94. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82, 035804 (2010)

    Article  ADS  Google Scholar 

  95. S. Goriely, A. Bauswein, H.-T. Janka, Astrophys. J. Lett. 738, L32 (2011)

    Article  ADS  Google Scholar 

  96. O. Just, A. Bauswein, R. Ardevol-Pulpillo, S. Goriely, H.-T. Janka, Mon. Not. R. Astron. Soc. 448, 541 (2015)

    Article  ADS  Google Scholar 

  97. J.-F. Lemaître, S. Goriely, A. Bauswein, H.-T. Janka, Phys, Rev. C 103, 025806 (2021)

    Article  ADS  Google Scholar 

  98. R. Jodon, M. Bender, K. Bennaceur, J. Meyer, Phys. Rev. C 94, 024335 (2016)

    Article  ADS  Google Scholar 

  99. M. Bender, T. Cornelius, G.A. Lalazissis, J.A. Maruhn, W. Nazarewicz, P.-G. Reinhard, Eur. Phys. J. A 14, 23 (2002)

    ADS  Google Scholar 

  100. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 78, 054312 (2008)

    Article  ADS  Google Scholar 

  101. K.-H. Schmidt, D. Vermeulen, In Atomic Masses and Fundamental Constants 6, 119, ed. by J.A. Nolen Jr., W. Benenson (Springer, Boston, 1980)

  102. N. Zeldes, T.S. Dumitrescu, H.S. Köhler, Nucl. Phys. A 399, 11 (1983)

    Article  ADS  Google Scholar 

  103. V. Manea et al., Phys. Rev. Lett. 124, 092502 (2020)

    Article  ADS  Google Scholar 

  104. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006)

    Article  ADS  Google Scholar 

  105. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  106. P. Möller et al., At. Data Nucl. Data Tables 94, 758 (2008)

    Article  ADS  Google Scholar 

  107. S. Hilaire, private communication

  108. Y.L. Yang, Y.K. Wang, P.W. Zhao, Z.P. Li. arXiv:2108.13057 [nucl-th]

  109. L. Guo, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 76, 034317 (2007)

    Article  ADS  Google Scholar 

  110. S.F. Shen, S.J. Zheng, F.R. Xu, R. Wyss, Phys. Rev. C 84, 044315 (2011)

    Article  ADS  Google Scholar 

  111. T. Nikšić, P. Marević, D. Vretenar, Phys. Rev. C 89, 044325 (2014)

    Article  ADS  Google Scholar 

  112. G.H. Bhat, W.A. Dar, J.A. Sheikh, Y. Sun, Phys. Rev. C 89, 014328 (2014)

    Article  ADS  Google Scholar 

  113. P. Bonche, H. Flocard, P.-H. Heenen, S.J. Krieger, M.S. Weiss, Nucl. Phys. A 443, 39 (1985)

    Article  ADS  Google Scholar 

  114. R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, S. Perez-Martin, Phys. Lett. B 691, 202 (2010)

    Article  ADS  Google Scholar 

  115. C.L. Zhang, G.H. Bhat, W. Nazarewicz, J.A. Sheikh, Y. Shi, Phys. Rev. C 92, 034307 (2015)

    Article  ADS  Google Scholar 

  116. J. Xiang, Z.P. Li, Z.X. Li, J.M. Yao, J. Meng, Nucl. Phys. A 873, 1 (2012)

    Article  ADS  Google Scholar 

  117. J. Xiang, J.M. Yao, Y. Fu, Z.H. Wang, Z.P. Li, W.H. Long, Phys. Rev. C 93, 054324 (2016)

    Article  ADS  Google Scholar 

  118. Z. Shi, Z.P. Li, Phys. Rev. C 97, 034329 (2018)

    Article  ADS  Google Scholar 

  119. L.M. Robledo, R. Rodríguez-Guzman, P. Sarriguren, J. Phys. G Nucl. Part. Phys. 36, 115104 (2009)

    Article  ADS  Google Scholar 

  120. T. Nikšić, P. Ring, D. Vretenar, Y. Tian, Z.Y. Ma, Phys. Rev. C 81, 054318 (2010)

    Article  ADS  Google Scholar 

  121. G.H. Bhat, J.A. Sheikh, Y. Sun, U. Garg, Phys. Rev. C 86, 047307 (2012)

    Article  ADS  Google Scholar 

  122. A. Bohr, B.R. Mottelson, Nuclear structure. Vol II: Nuclear deformations, W. A. Benjamin, New York (1975)

  123. B.W. Xiong, Y.Y. Wang, At. Data Nucl. Data Tables 125, 193 (2019)

    Article  ADS  Google Scholar 

  124. C.M. Petrache et al., Phys. Rev. C 86, 044321 (2012)

    Article  ADS  Google Scholar 

  125. J. Timár et al., Phys. Rev. Lett. 122, 062501 (2019)

    Article  ADS  Google Scholar 

  126. N. Sensharma et al., Phys. Rev. Lett. 124, 052501 (2020)

    Article  ADS  Google Scholar 

  127. H. Schnack-Petersen, Nucl. Phys. A 594, 175 (1995)

    Article  ADS  Google Scholar 

  128. M. Djongolov et al., Phys. Lett. B 560, 24 (2003)

    Article  ADS  Google Scholar 

  129. S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  130. National Nuclear Data Center, Nuclear structure and decay data on-line library, Nudat 2.8 (2018). https://www.nndc.bnl.gov/nudat2/. Accessed June 2021

  131. M. Rocchini et al., Phys. Rev. C 103, 014311 (2021)

    Article  ADS  Google Scholar 

  132. M. Sugawara et al., Eur. Phys. J. A 16, 409 (2003)

    Article  ADS  Google Scholar 

  133. A.D. Ayangeakaa et al., Phys. Lett. B 754, 254 (2016)

    Article  ADS  Google Scholar 

  134. Y. Toh et al., Eur. Phys. J. A 9, 353 (2000)

    Article  ADS  Google Scholar 

  135. A.D. Ayangeakaa et al., Phys. Rev. Lett. 123, 102501 (2019)

    Article  ADS  Google Scholar 

  136. E. Clément et al., Phys. Rev. C 75, 054313 (2007)

    Article  ADS  Google Scholar 

  137. A.E. Kavka et al., Nucl. Phys. A 593, 177 (1995)

    Article  ADS  Google Scholar 

  138. E. Clément et al., Phys. Rev. C 94, 054326 (2016)

    Article  ADS  Google Scholar 

  139. M. Zielińska, Electromagnetic structure of molybdenum isotopes studied using Coulomb excitation method, Ph.D. thesis, Warsaw University (2005)

  140. M. Zielińska et al., Nucl. Phys. A 712, 3 (2002)

    Article  ADS  Google Scholar 

  141. K. Wrzosek-Lipska et al., Phys. Rev. C 86, 064305 (2012)

    Article  ADS  Google Scholar 

  142. J. Srebrny et al., Nucl. Phys. A 766, 25 (2006)

    Article  ADS  Google Scholar 

  143. K. Wrzosek-Lipska et al., Acta Phys. Pol. B 51, 789 (2020)

    Article  ADS  Google Scholar 

  144. C. Fahlander et al., Nucl. Phys. A 485, 327 (1988)

    Article  ADS  Google Scholar 

  145. L.E. Svensson et al., Nucl. Phys. A 584, 547 (1995)

    Article  ADS  Google Scholar 

  146. L. Morrison et al., Phys. Rev. C 102, 054304 (2020)

    Article  ADS  Google Scholar 

  147. C.Y. Wu et al., Nucl. Phys. A 607, 178 (1996)

    Article  ADS  Google Scholar 

  148. M. Zielinska, private communication

  149. K. Kumar, Phys. Rev. Lett. 28, 249 (1972)

    Article  ADS  Google Scholar 

  150. D. Cline, Ann. Rev. Nucl. Part. Sci. 36, 683 (1986)

    Article  ADS  Google Scholar 

  151. A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020)

    Article  ADS  Google Scholar 

  152. M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008)

    Article  ADS  Google Scholar 

  153. T.R. Rodríguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010)

    Article  ADS  Google Scholar 

  154. Z.C. Gao, M. Horoi, Y.S. Chen, Phys. Rev. C 92, 064310 (2015)

    Article  ADS  Google Scholar 

  155. H. Euteneuer, J. Friedrich, N. Voegler, Nucl. Phys. A 296, 452 (1978)

    Article  ADS  Google Scholar 

  156. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 627, 710 (1997)

    Article  ADS  Google Scholar 

  157. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  158. Z.H. Li, H.-J. Schulze, Phys. Rev. C 78, 028801 (2008)

    Article  ADS  Google Scholar 

  159. B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)

    Article  ADS  Google Scholar 

  160. R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988)

    Article  ADS  Google Scholar 

  161. E. Fonseca, et al. arXiV:astro-ph2104.00880

  162. N. Chamel, S. Goriely, J.M. Pearson, Phys. Rev. C 80, 065804 (2009)

    Article  ADS  Google Scholar 

  163. M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009)

    Article  ADS  Google Scholar 

  164. L.-W. Chen, C.M. Ko, B.-A. Li, J. Xu, Phys. Rev. C 82, 024321 (2010)

    Article  ADS  Google Scholar 

  165. J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013)

    Article  ADS  Google Scholar 

  166. L. Trippa, G. Colò, E. Vigezzi, Phys. Rev. C 77, 061304(R) (2008)

    Article  ADS  Google Scholar 

  167. M. Fortin, C. Providência, Ad.. R. Raduta, F. Gulminelli, J..L. Zdunik, P. Haensel, M. Bejger, Phys. Rev. C 94, 035804 (2016)

    Article  ADS  Google Scholar 

  168. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)

    Article  ADS  Google Scholar 

  169. J.E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K.E. Schmidt, A. Schwenk, Phys. Rev. Lett. 116, 062501 (2016)

    Article  ADS  Google Scholar 

  170. T. Lesinski, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 74, 044315 (2006)

    Article  ADS  Google Scholar 

  171. L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73, 014313 (2006)

    Article  ADS  Google Scholar 

  172. X.R. Zhou, G.F. Burgio, U. Lombardo, H.-J. Schulze, W. Zuo, Phys. Rev. C 69, 018801 (2004)

    Article  ADS  Google Scholar 

  173. A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013)

    Article  ADS  Google Scholar 

  174. S. Goriely, A. Bauswein, O. Just, H.-T. Janka, Mon. Not. R. Astron. Soc. 452, 3894 (2015)

    Article  ADS  Google Scholar 

  175. R. Ardevol-Pulpillo, H.-T. Janka, O. Just, A. Bauswein, Mon. Not. R. Astron. Soc. 485, 4754 (2019)

    Article  ADS  Google Scholar 

  176. T. Marketin, L. Huther, G. Martinez-Pinedo, Phys. Rev. C 93, 025805 (2016)

    Article  ADS  Google Scholar 

  177. S. Goriely, Astron. Astrophys. 342, 881 (1999)

    ADS  Google Scholar 

  178. S.E. Larsson, I. Ragnarsson, S.G. Nilsson, Phys. Lett. B 38, 269 (1972)

    Article  ADS  Google Scholar 

  179. B.N. Lu, J. Zhao, E.G. Zhao, S.G. Zhou, Phys. Rev. C 89, 014323 (2014)

    Article  ADS  Google Scholar 

  180. W. Ryssens, M. Bender, K. Bennaceur, P.-H. Heenen, J. Meyer, Phys. Rev. C 99, 044315 (2019)

    Article  ADS  Google Scholar 

  181. K. Petrík, M. Kortelainen, Phys. Rev. C 97, 034321 (2018)

    Article  ADS  Google Scholar 

  182. Y. Alhassid, G.F. Bertsch, L. Fang, S. Liu, Phys. Rev. C 72, 064326 (2005)

    Article  ADS  Google Scholar 

  183. M.-H. Koh, D.D. Duc, T.V. Nhan Hao, H.T. Long, P. Quentin, EPJA 52, 3 (2016)

    Article  ADS  Google Scholar 

  184. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Magda Zielinska for extracting the experimental \(\gamma \) values from the literature and providing them to us for the preparation of Fig. 7, as well as for constructive comments on the manuscript. This work was supported by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under the EOS Project nr O022818F. The present research benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement nr 1117545. S.G. and W.R. acknowledge financial support from the FNRS (Belgium). W.R. also acknowledges support by the U.S. DOE grant No. DE-SC0019521. Work by M.B. has been supported by the French Agence Nationale de la Recherche under grant No. 19-CE31-0015-01 (NEWFUN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Scamps.

Additional information

Communicated by Vittorio Somà

The original online version of this article was revised: The Supplementary Information was missing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DAT 1227)

Appendices

Appendix A: Coupling constants of \(E_{\mathrm{Sk}}\)

The Skyrme energy density \(\mathcal {E}\) of Eq. (5) is determined by ten coupling constants, which are determined by the model parameters \(t_{0-3}, x_{0-3}, W_0\) and \(W_0'\) as follows:

$$\begin{aligned}&C^{\rho \rho }_0 = \tfrac{3}{8}t_0 \, , \end{aligned}$$
(A.1a)
$$\begin{aligned}&C^{\rho \rho }_1 = - \tfrac{1}{4}t_0 \left( \tfrac{1}{2} + x_0\right) \, , \end{aligned}$$
(A.1b)
$$\begin{aligned}&C^{\rho \rho \rho ^{\gamma }}_0 = \tfrac{3}{48} t_3 \, , \end{aligned}$$
(A.1c)
$$\begin{aligned}&C^{\rho \rho \rho ^{\gamma }}_1 = - \tfrac{1}{24} t_3 \left( \tfrac{1}{2} + x_3\right) \, , \end{aligned}$$
(A.1d)
$$\begin{aligned}&C^{\rho \tau }_0 = \tfrac{3}{16} t_1 + \tfrac{1}{4} t_2 \left( \tfrac{5}{4} + x_2\right) \, , \end{aligned}$$
(A.1e)
$$\begin{aligned}&C^{\rho \tau }_1 = - \tfrac{1}{8} t_1\left( \tfrac{1}{2} + x_1\right) - t_2 \left( \tfrac{1}{2} + x_2 \right) \, , \end{aligned}$$
(A.1f)
$$\begin{aligned}&C^{\rho \varDelta \rho }_0 = - \tfrac{9}{64} t_1 + \tfrac{1}{16} t_2 \left( \tfrac{5}{4} + x_2\right) \, , \end{aligned}$$
(A.1g)
$$\begin{aligned}&C^{\rho \varDelta \rho }_1 = \tfrac{3}{32} t_1 (\tfrac{1}{2} + x_1) + \tfrac{1}{32} t_2 (\tfrac{1}{2} + x_2) \, , \end{aligned}$$
(A.1h)
$$\begin{aligned}&C^{\rho \nabla \cdot J}_0 = - \frac{W_0}{2} - \frac{W_0'}{4} \, , \end{aligned}$$
(A.1i)
$$\begin{aligned}&C^{\rho \nabla \cdot J}_1 = - \frac{W_0'}{4} \, . \end{aligned}$$
(A.1j)

Appendix B: Further details on the rotational correction and the MOI

The rotational correction, Eq. (12a), depends on the calculation of \(\langle {\hat{J}}_{\mu }^2 \rangle \) and \(\mathcal {I}_{\mu }\) for all three principal axes of the nucleus. Formulas are available in the literature for even-even nuclei (see, e.g. [56, 61]). However, naively utilizing these expressions in our calculations is problematic for two reasons.

The first is purely technical: the calculation of \(\mathcal {I}_{\mu }\) involves a summation over all possible two-quasiparticle excitations in the model space, weighted by the inverse of the sum of their quasiparticle energies. Unlike any other quantity discussed here, this sum is not naturally cut by the single-particle occupation factors. As our numerical implementation can only represent a fraction of the entire quasiparticle spectrum, we have introduced an additional cutoff for the rotational correction. We replace the matrix elements of the single-particle angular momentum operator \({\hat{\jmath }}\) that figure into the calculation of both \(\langle {\hat{J}}^2_{\mu } \rangle \) and \(\mathcal {I}_{\mu }\) as

$$\begin{aligned} \langle k | {\hat{\jmath }}_{\mu } | l\rangle&\rightarrow f_{q, k}^\mathrm{MOI} f_{q, l}^{\mathrm{MOI}} \langle k | {\hat{\jmath }}_{\mu } | l\rangle \, , \end{aligned}$$
(B.2)
$$\begin{aligned} f_{q, k}^{\mathrm{MOI}}&= \left[ 1 + e^{(\epsilon _k - \lambda _q - E_\mathrm{cut})/\mu _{\mathrm{MOI}}}\right] ^{-1/4} \, , \end{aligned}$$
(B.3)

where the cut-off energy \(E_{\mathrm{cut}}\) is identical to the one used in the pairing channel (Eq. 7), but \(\mu _{\mathrm{MOI}} = 1\) MeV.

The second problem affects the calculation of both quantities for odd-A and odd-odd nuclei. For the ground states of even-even nuclei, the expectation value of \({\hat{J}}_{\mu }^2\) and the Belyaev MOI are purely collective in nature, i.e. non-zero values are generated by many nucleons as a result of the nuclear deformation. This picture is modified significantly by the presence of blocked quasiparticles, whose individual contributions to both \({\hat{J}}_{\mu }^2\) and \(\mathcal {I}_B\) are generally sizeable and cannot be considered as collective. Furthermore, the Belyaev MOI is fundamentally a quantity obtained from second-order perturbation theory of an HFB minimum. While its calculation can be generalized to include the possibility of blocked quasiparticles along the lines of Ref. [182], the validity of such an approach can be questioned. As a purely practical recipe to sidestep these issues, we calculate both \({\hat{J}}_{\mu }^2\) and \(\mathcal {I}_B\) for odd-A and odd-odd nuclei by omitting the contributions from all blocked quasiparticles, mirroring the approach of Ref. [183].

Finally, we comment on the comparison of calculated (Belyaev) MOI with experimental data, as we do in Fig. 10. For axial configurations, the Belyaev MOI along the symmetry axis vanishes, while the two remaining values are equal; comparison to experiment is then straightforward. For triaxial nuclear configurations, we obtain however three non-zero, distinct values for the MOI. In those cases, we have chosen systematically the largest among the three values as the one to be compared to experiment. We have made this rather ad-hoc choice motivated by a naive semi-classical model of rotation, where the largest MOI produces the lowest-lying rotational excitations. As the experimental data is extracted from the excitation energy of the first \(2^+\) state in rotational nuclei, this seems to be the most appropriate choice.

Table 4 Contents of the Mass_Table_BSkG1.dat file

Explanation of the supplementary material

We provide as supplementary material the file Mass_Table_BSkG1.dat, which contains the calculated ground state properties of all nuclei with \( 8 \le Z \le 110 \) lying between the proton and neutron drip lines. Its content is summarized and explained in Table  4. A few additional remarks are in order:

  • Column 11/12: A unique definition of the pairing gap exists only for HFB calculations with schematic interactions. To extract some information on the overall importance of the pairing correlations for a given nucleus, we use the uv-weighted average pairing gaps \(\langle \varDelta \rangle _{n/p} \) of Ref. [184].

  • Column 16: we report only the largest MOI among all three directions, i.e. the file contains \(\max _{\mu = x,y,z} \{ \mathcal {I}_{\mu } \}\).

  • Column 17/18: as discussed in Sect. 2.2.3, we construct auxiliary states for odd-A and odd-odd nuclei through a self-consistent blocking procedure. To make these calculations reproducible, we provide for such nuclei the parity quantum number of the blocked quasiparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scamps, G., Goriely, S., Olsen, E. et al. Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape. Eur. Phys. J. A 57, 333 (2021). https://doi.org/10.1140/epja/s10050-021-00642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00642-1

Navigation