Skip to main content
Log in

Effect of thermal gluon absorption and medium fluctuations on heavy flavour nuclear modification factor at RHIC and LHC energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The presence of thermal gluons reduces the stimulated gluon emission off a heavy quark propagating in the quark-gluon plasma (QGP) while absorption causes reduction of the radiative energy loss. On the other hand, the chromo-electromagnetic field fluctuations present in the QGP lead to collisional energy gain of the heavy quark. The net effect of the thermal gluon absorption and field fluctuations is a reduction of the total energy loss of the heavy quark, prominent at the lower momenta. We consider both kind of the energy gains along with the usual losses, and compute the nuclear modification factor (\(R_{AA}\)) of heavy mesons, viz., D and B mesons. The calculations have been compared with the experimental measurements in Au–Au collisions at \(\sqrt{s_{NN}} = 200\) GeV from STAR and PHENIX experiments at the RHIC and Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV and 5.02 TeV from CMS and ALICE experiments at the LHC. We find a significant effect of the total energy gain due to thermal gluon absorption and field fluctuations on heavy flavour suppression, especially at the lower transverse momenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. W.J. Xing, S. Cao, G.Y. Qin, H. Xing, Phys. Lett. B 805, 135424 (2020)

    Article  Google Scholar 

  2. M.H. Thoma, M. Gyulassy, Nucl. Phys. B 351, 491 (1991)

    Article  ADS  Google Scholar 

  3. E. Brateen, M.H. Thoma, Phys. Rev. D 44, R2625 (1991)

    Article  ADS  Google Scholar 

  4. A. Meistrenko, A. Pashier, J. Uphoff, C. Greiner, Nucl. Phys. A 901, 51 (2013)

    Article  ADS  Google Scholar 

  5. M.G. Mustafa, D. Pal, D.K. Srivastava, M.H. Thoma, Phys. Lett. B 428, 234 (1998) [Erratum: Phys. Lett. B 438, 450 (1998)]

  6. M.G. Mustafa, Phys. Rev. C 72, 014905 (2005)

    Article  ADS  Google Scholar 

  7. M.G. Mustafa, D. Pal, D.K. Srivastava, Phys. Rev. C 57, 889 (1998)

    Article  ADS  Google Scholar 

  8. Y.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001)

    Article  ADS  Google Scholar 

  9. Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, J. Phys. G 17, 1602 (1991)

    Article  ADS  Google Scholar 

  10. O. Fochler, Z. Xu, C. Greiner, Phys. Rev. C 82, 024907 (2010)

    Article  ADS  Google Scholar 

  11. S. Das, J. Alam, P. Mohanty, Phys. Rev. C 82, 014908 (2010)

    Article  ADS  Google Scholar 

  12. S. Das, J. Alam, P. Mohanty, Phys. Rev. C 80, 054916 (2009)

    Article  ADS  Google Scholar 

  13. R. Abir, C. Greiner, M. Martinez, M.G. Mustafa, J. Uphoff, Phys. Rev. D 85, 054012 (2012)

    Article  ADS  Google Scholar 

  14. R. Abir, C. Greiner, M. Martinez, M.G. Mustafa, Phys. Rev. D 83, 011501(R) (2011)

    Article  ADS  Google Scholar 

  15. S.K. Das, J. Alam, Phys. Rev. D 82, 051502(R) (2010)

  16. T. Bhattacharyya, S. Mazumder, S. Das, J. Alam, Phys. Rev. D 85, 034033 (2012)

    Article  ADS  Google Scholar 

  17. O. Fochler, Z. Xu, C. Greiner, Phys. Rev. Lett. 102, 202301 (2009)

    Article  ADS  Google Scholar 

  18. P.B. Gossiaux, J. Aichelin, T. Gousset, V. Guiho, J. Phys. G37, 094019 (2010)

    Article  ADS  Google Scholar 

  19. W.A. Horowitz, arXiv:1011.4316 and references therein

  20. S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy, Nucl. Phys. A 784, 426 (2007)

    Article  ADS  Google Scholar 

  21. S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy, Nucl. Phys. A 783, 493 (2007)

    Article  ADS  Google Scholar 

  22. M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733, 265 (2004)

    Article  ADS  Google Scholar 

  23. M. Gyulassy, P. Levai, I. Vitev, Phys. Rev. Lett. 85, 5535 (2000)

    Article  ADS  Google Scholar 

  24. R. Rapp et al., Nucl. Phys. A 979, 21 (2018)

    Article  ADS  Google Scholar 

  25. X. Dong, V. Greco, Prog. Part. Nucl. Phys. 104, 97 (2019)

    Article  ADS  Google Scholar 

  26. S.K. Das, F. Scardina, S. Plumari, V. Greco, Phys. Lett. B 747, 260 (2015)

    Article  ADS  Google Scholar 

  27. S. Li, C. Wang, X. Yuan, S. Feng, Phys. Rev. C 98, 014909 (2018)

    Article  ADS  Google Scholar 

  28. S. Li, C. Wang, Phys. Rev. C 98, 034914 (2018)

    Article  ADS  Google Scholar 

  29. H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)

    Article  ADS  Google Scholar 

  30. P.B. Gossiaux et al., arXiv:1102.1114

  31. Y. Xu, S. Cao, M. Nahrgang, J.E. Bernhard, S.A. Bass, Phys. Rev. C 97, 014907 (2018)

    Article  ADS  Google Scholar 

  32. W. Ke, Y. Xu, S.A. Bass, Phys. Rev. C 98, 064901 (2018)

    Article  ADS  Google Scholar 

  33. S. Peigne, A. Peshier, Phys. Rev. D 77, 114017 (2008)

    Article  ADS  Google Scholar 

  34. A.I. Sheikh, Z. Ahammed, Eur. Phys. J. A 56, 217 (2020)

    Article  ADS  Google Scholar 

  35. A.I. Sheikh, Z. Ahammed, P. Shukla, M.G. Mustafa, Phys. Rev. C 98, 034915 (2018)

    Article  ADS  Google Scholar 

  36. U. Jamil, D.K. Srivastava, J. Phys. G 37, 085106 (2010)

    Article  ADS  Google Scholar 

  37. N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 69, 114003 (2004)

    Article  ADS  Google Scholar 

  38. N. Armesto, M. Cacciari, A. Dainese, C.A. Salgado, U.A. Wiedemann, Phys. Lett. B 673, 362 (2006)

    Article  ADS  Google Scholar 

  39. B.Z. Kopeliovich, I.K. Potashnikova, I. Schmidt, Phys. Rev. C 82, 037901 (2010)

    Article  ADS  Google Scholar 

  40. W.C. Xiang, H.T. Ding, D.C. Zhou, D. Rohrich, Eur. Phys. J. A 25, 75 (2005)

    Article  ADS  Google Scholar 

  41. I. Vitev, J. Phys. G 35, 104011 (2008)

    Article  ADS  Google Scholar 

  42. M. Younus, C.E. Coleman-Smith, S.A. Bass, D.K. Srivastava, Phys. Rev. C 91, 024912 (2015)

    Article  ADS  Google Scholar 

  43. S.K. Das, F. Scardina, S. Plumari, V. Greco, Phys. Rev. C 90, 044901 (2014)

    Article  ADS  Google Scholar 

  44. J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Nucl. Phys. A 855, 444 (2011)

    Article  ADS  Google Scholar 

  45. J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Phys. Rev. C 84, 024908 (2011)

    Article  ADS  Google Scholar 

  46. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Phys. Rev. C 75, 064908 (2007)

    Article  ADS  Google Scholar 

  47. R. Abir, U. Jamil, M.G. Mustafa, D.K. Srivastava, Phys. Lett. B 715, 183 (2012)

    Article  ADS  Google Scholar 

  48. K. Saraswat, P. Shukla, V. Singh, Nucl. Phys. A 934, 83 (2015)

    Article  ADS  Google Scholar 

  49. K. Saraswat, P. Shukla, V. Singh, Nucl. Phys. A 961, 169 (2017)

    Article  ADS  Google Scholar 

  50. A. Adare et al., PHENIX Collaboration, Phys. Rev. C 84, 044905 (2011)

  51. L. Adamczyk et al., STAR Collaboration, Phys. Rev. Lett. 113, 142301 (2014)

  52. B. Abelev et al., ALICE Collaboration, J. High Energy Phys. 09, 112 (2012)

  53. J. Adam et al., ALICE Collaboration, J. High Energy Phys. 03, 081 (2016)

  54. CMS Collaboration, CERN Report No. CMS-PAS-HIN-15-005 (2015)

  55. CMS Collaboration, Phys. Lett. B 782, 474 (2018)

  56. CMS Collaboration, Phys. Rev. Lett. 119, 152301 (2017)

  57. E. Wang, X. Wang, Phys. Rev. Lett. 87, 142301 (2001)

    Article  ADS  Google Scholar 

  58. A.I. Sheikh, Z. Ahammed, Nucl. Phys. A 986, 48 (2019)

    Article  ADS  Google Scholar 

  59. H.L. Lai, M. Guzzi, J. Huston, Z Li., P.M. Nodolsky, J. Pumplin, C.P. Yuan, Phys. Rev. D 82, 074024 (2010)

  60. K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 0904, 065 (2009)

    Article  ADS  Google Scholar 

  61. C. Peterson, D. Schlatter, I. Schmitt, P. Zerwas, Phys. Rev. D 27, 105 (1983)

    Article  ADS  Google Scholar 

  62. B. Muller, Phys. Rev. C 67, 061901 (2003)

    Article  ADS  Google Scholar 

  63. V. Kumar, P. Shukla, R. Vogt, Phys. Rev. C 92, 024908 (2015)

    Article  ADS  Google Scholar 

  64. X. Zhao, R. Rapp, Nucl. Phys. A 859, 114 (2011)

  65. P. Huovinen, P. Petreczky, Nucl. Phys. A 837, 26 (2010)

  66. ALICE Collaboration, Phys. Rev. Lett. 106, 032301 (2011)

  67. CMS Collaboration, J. High Energy Phys. 08, 141 (2011)

Download references

Acknowledgements

I acknowledge support from the Office of Nuclear Physics within the US DOE Office of Science, under Grant DE-FG02-89ER40531. I am thankful to Declan Keane, Prithwish Tribedy, Zubayer Ahammed and Md Hasanujjaman for carefully reading the manuscript and the suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashik Ikbal Sheikh.

Additional information

Communicated by Che-Ming Ko.

Appendices

Appendix A: Radiative energy loss: generalized dead cone approach

The expression for heavy quark radiative energy loss, based on the generalised dead cone approach and the gluon emission probability [13], can be found as [47]:

$$\begin{aligned} \frac{dE}{dx}= & {} 24\alpha _{s}^{3}\rho _{QGP}\frac{1}{\mu _g}\left( 1-\beta _1\right) \nonumber \\&\times \left( \sqrt{\frac{1}{(1-\beta _1)}\log (\frac{1}{\beta _1})}-1\right) {\mathscr {F}}(\delta ), \end{aligned}$$
(A.1)

with

$$\begin{aligned} {\mathscr {F}}(\delta )= & {} 2\delta - \frac{1}{2}\log \left( \frac{1+\frac{M^2}{s}e^{2\delta }}{1+\frac{M^2}{s}e^{-2\delta }}\right) \nonumber \\&- \left( \frac{\frac{M^2}{s}\sinh {(2\delta )}}{1+2\frac{M^2}{s}\cosh {(2\delta )}+\frac{M^4}{s^2}} \right) , \end{aligned}$$
(A.2)

where

$$\begin{aligned} \delta = \frac{1}{2}\log \left[ \frac{1}{(1-\beta _1)}\log \left( \frac{1}{\beta _1}\right) \left( 1+\sqrt{1-\frac{(1-\beta _1)}{\log \frac{1}{\beta _1}}}\right) ^2\right] \end{aligned}$$
(A.3)

and \(\rho _{QGP}\) is the density of the QGP medium which acts as a background containing the target partons. If \(\rho _q\) and \(\rho _g\) are the density of quarks and gluons respectively in the medium, then the \(\rho _{QGP}\) is given by

$$\begin{aligned} \rho _{QGP}= & {} \rho _q+\frac{9}{4}\rho _g, \end{aligned}$$
(A.4)
$$\begin{aligned} \beta _1= & {} \frac{\mu _{g}^{2}}{CET}, \end{aligned}$$
(A.5)
$$\begin{aligned} C= & {} \frac{3}{2}-\frac{M^2}{4ET}\nonumber \\&+\frac{M^4}{48E^2T^2\beta _0}\log \left( \frac{M^2+6ET(1+\beta _0)}{M^2+6ET(1-\beta _0)}\right) , \end{aligned}$$
(A.6)
$$\begin{aligned} \beta _0= & {} \sqrt{1-\frac{M^2}{E^2}} \end{aligned}$$
(A.7)

It is to be noted here that later a kinematical correction of the above calculations was made in Ref. [48].

Appendix B: Collisional energy loss: Thoma Gyulassy approach

The collisional energy loss per unit length dE/dx of a heavy quark of mass m, momentum p, energy \(E=\sqrt{p^2+m^2}\) and velocity \(v=p/E\) has been reported by Thoma and Gyulassy [2]:

$$\begin{aligned} \frac{dE}{dx}= & {} \frac{4\pi \alpha _{s}^{2}T^{2}C_F}{3} \ln \left( \frac{k_{max}}{k_D}\right) \nonumber \\&\times \frac{1}{v^2}\left( v+\frac{v^2-1}{2}\ln \frac{1+v}{1-v}\right) \end{aligned}$$
(B.8)

where \(k_{max} \approx \frac{4Tp}{E-p+4T}\) is maximal momentum transfer, with T being the temperature of the medium and \(k_D = \sqrt{3}m_g\) is Debye momentum, \(m_g\) being thermal gluon mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, A.I. Effect of thermal gluon absorption and medium fluctuations on heavy flavour nuclear modification factor at RHIC and LHC energies. Eur. Phys. J. A 57, 323 (2021). https://doi.org/10.1140/epja/s10050-021-00636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00636-z

Navigation