Skip to main content
Log in

A measurement of two-photon exchange in Super-Rosenbluth separations with positron beams

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The proton electric and magnetic form factors, \(G_E\) and \(G_M\), are intrinsically connected to the spatial distribution of charge and magnetization in the proton. For decades, Rosenbluth separation measurements of the angular dependence of elastic e\(^-\)-p scattering were used to extract \(G_E\) and \(G_M\). More recently, polarized electron scattering measurements, aiming to improve the precision of \(G_E\) extractions, showed significant disagreement with Rosenbluth measurements at large momentum transfers (\(Q^2\)). This discrepancy is generally attributed to neglected two-photon exchange (TPE) corrections. At larger \(Q^2\) values, a new ‘Super-Rosenbluth’ technique was used to improve the precision of the Rosenbluth extraction, allowing for a better quantification of the discrepancy, while comparisons of e\(^+\)-p and e\(^-\)-p scattering indicated the presence of TPE corrections, but at \(Q^2\) values below where a clear discrepancy is observed. In this work, we demonstrate the significant benefits to combining the Super-Rosenbluth technique with positron beam measurements. This approach provides a greater kinematic reach and is insensitive to some of the key systematic uncertainties in previous positron measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data to be deposited. All data shown are taken from the publications referenced in the paper.]

References

  1. J.J. Kelly, Phys. Rev. C 66, 065203 (2002). https://doi.org/10.1103/PhysRevC.66.065203

    Article  ADS  Google Scholar 

  2. G.A. Miller, Phys. Rev. C 99(3), 035202 (2019). https://doi.org/10.1103/PhysRevC.99.035202

    Article  ADS  Google Scholar 

  3. C. Perdrisat, V. Punjabi, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007)

    Article  ADS  Google Scholar 

  4. J. Arrington, C. Roberts, J. Zanotti, J. Phys. G 34, S23 (2007)

    Article  ADS  Google Scholar 

  5. M.N. Rosenbluth, Phys. Rev. 79(4), 615 (1950)

    Article  ADS  Google Scholar 

  6. J. Arrington, Phys. Rev. C 68, 034325 (2003)

    Article  ADS  Google Scholar 

  7. A.I. Akhiezer, L.N. Rozentsveig, I.M. Shumushkevich, Soviet Physics JETP 6, 588 (1958). Zhurnal Eksperimental’noi i Teoretischeskoi Fiziki 33, 765 (1957)

  8. R.G. Arnold, C.E. Carlson, F. Gross, Phys. Rev. C 23, 363 (1981)

    Article  ADS  Google Scholar 

  9. M.K. Jones et al., Phys. Rev. Lett. 84, 1398 (2000)

    Article  ADS  Google Scholar 

  10. O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002)

    Article  ADS  Google Scholar 

  11. J. Arrington, Phys. Rev. C 69, 022201 (2004)

    Article  ADS  Google Scholar 

  12. I.A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005)

    Article  ADS  Google Scholar 

  13. M.E. Christy et al., Phys. Rev. C 70, 015206 (2004)

    Article  ADS  Google Scholar 

  14. V. Punjabi et al., Phys. Rev. C C71, 055202 (2005). (Erratum: Phys. Rev. C71, 069902 (2005))

    Article  ADS  Google Scholar 

  15. A.J.R. Puckett et al., Phys. Rev. Lett. 104(24), 242301 (2010)

    Article  ADS  Google Scholar 

  16. A.J.R. Puckett et al., Phys. Rev. C 85, 045203 (2012)

    Article  ADS  Google Scholar 

  17. A.J.R. Puckett et al., Phys. Rev. C 96, 055203 (2017)

    Article  ADS  Google Scholar 

  18. I.A. Qattan, Precision Rosenbluth measurement of the proton elastic electromagnetic form factors and their ratio at \(Q^2\) = 2.64 GeV\(^2\), 3.20 GeV\(^2\) and 4.10 GeV\(^2\). Phd thesis, Northwestern University (2005). ArXiv:nucl-ex/0610006

  19. P.A. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003)

    Article  ADS  Google Scholar 

  20. P. Blunden, W. Melnitchouk, J. Tjon, Phys. Rev. Lett. 91, 142304 (2003)

    Article  ADS  Google Scholar 

  21. Y. Chen, A. Afanasev, S. Brodsky, C. Carlson, M. Vanderhaeghen, Phys. Rev. Lett. 93, 122301 (2004). https://doi.org/10.1103/PhysRevLett.93.122301

    Article  ADS  Google Scholar 

  22. J. Arrington, P.G. Blunden, W. Melnitchouk, Prog. Part. Nucl. Phys. 66, 782 (2011)

    Article  ADS  Google Scholar 

  23. V. Tvaskis, J. Arrington, M. Christy, R. Ent, C. Keppel, Y. Liang, G. Vittorini, Phys. Rev. C 73, 025206 (2006)

    Article  ADS  Google Scholar 

  24. J. Arrington, W. Melnitchouk, J. Tjon, Phys. Rev. C 76, 035205 (2007)

    Article  ADS  Google Scholar 

  25. J.C. Bernauer et al., Phys. Rev. C 90, 015206 (2014)

    Article  ADS  Google Scholar 

  26. Z. Ye, J. Arrington, R.J. Hill, G. Lee, Phys. Lett. B 777, 8 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Arrington, Phys. Rev. C 69(3), 032201 (2004)

    Article  ADS  Google Scholar 

  28. D. Adikaram et al., Phys. Rev. Lett. 114, 062003 (2015)

    Article  ADS  Google Scholar 

  29. D. Rimal et al., Phys. Rev. C 95, 064201 (2017)

    Article  Google Scholar 

  30. I.A. Rachek et al., Phys. Rev. Lett. 114, 062005 (2015)

    Article  ADS  Google Scholar 

  31. B.S. Henderson et al., Phys. Rev. Lett. 118, 092501 (2017)

    Article  ADS  Google Scholar 

  32. P.G. Blunden, W. Melnitchouk, J.A. Tjon, Phys. Rev. C 72(3), 034612 (2005)

    Article  ADS  Google Scholar 

  33. H.Q. Zhou, S.N. Yang, Eur. Phys. J. A 51, 105 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. A.V. Gramolin, D.M. Nikolenko, Phys. Rev. C 93(5), 055201 (2016)

    Article  ADS  Google Scholar 

  35. B. Wojtsekhowski, J. Arrington, M. Christy, S. Gilad, V. Sulkosky, Spokespersons, Jefferson Lab experiment E12-07-108. https://www.jlab.org/exp_prog/proposals/07/PR12-07-108.pdf

  36. J. Arrington, I. Sick, Phys. Rev. C 76, 035201 (2007)

    Article  ADS  Google Scholar 

  37. P.G. Blunden, W. Melnitchouk, J.A. Tjon, Phys. Rev. C 81, 018202 (2010). https://doi.org/10.1103/PhysRevC.81.018202

    Article  ADS  Google Scholar 

  38. J. Arrington, K. de Jager, C.F. Perdrisat, J. Phys. Conf. Ser. 299, 012002 (2011)

    Article  Google Scholar 

  39. P.G. Blunden, W. Melnitchouk, A.W. Thomas, Phys. Rev. Lett. 109, 262301 (2012). https://doi.org/10.1103/PhysRevLett.109.262301

    Article  ADS  Google Scholar 

  40. N.L. Hall, P.G. Blunden, W. Melnitchouk, A.W. Thomas, R.D. Young, Phys. Lett. B 731, 287 (2014). https://doi.org/10.1016/j.physletb.2014.04.033 (Erratum: Phys. Lett. B 733, 380 (2014))

    Article  ADS  Google Scholar 

  41. N.L. Hall, P.G. Blunden, W. Melnitchouk, A.W. Thomas, R.D. Young, Phys. Lett. B 753, 221 (2016). https://doi.org/10.1016/j.physletb.2015.11.081

    Article  ADS  Google Scholar 

  42. A. Afanasev, P.G. Blunden, D. Hasell, B.A. Raue, Prog. Part. Nucl. Phys. 95, 245 (2017)

    Article  ADS  Google Scholar 

  43. J. Arrington, Spokesperson, Jefferson Lab experiment E05-017. https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=378

  44. M. Yurov, J. Arrington, AIP Conf. Proc. 1970, 020004 (2018)

    Article  Google Scholar 

  45. A. Accardi, et al., e\(^+\)@JLab White Paper: an experimental program with positron beams at Jefferson Lab (2020). arXiv:2007.15081 [nucl-ex] JLAB-PHY-20-3232

  46. J. Alcorn et al., Nucl. Instrum. Methods A 522, 294 (2004)

  47. M. Yurov, Measurements of proton electromagnetic form factors and two-photon exchange in elastic electron-proton scattering. Phd thesis, University of Virginia (2017)

  48. A.V. Afanasev, C.E. Carlson, Phys. Rev. Lett. 94, 212301 (2005)

    Article  ADS  Google Scholar 

  49. M. Meziane et al., Phys. Rev. Lett. 106, 132501 (2011). https://doi.org/10.1103/PhysRevLett.106.132501

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Arrington.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrington, J.R., Yurov, M. A measurement of two-photon exchange in Super-Rosenbluth separations with positron beams. Eur. Phys. J. A 57, 319 (2021). https://doi.org/10.1140/epja/s10050-021-00633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00633-2

Navigation