Skip to main content
Log in

Target-normal single spin asymmetries measured with positrons

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Two-photon exchange and the larger class of hadronic box diagrams are difficult to calculate without a large degree of model-dependence. At the same time, these processes are significant radiative corrections in parity-violating electron scattering, in neutron decay, and may even be responsible for the proton’s form factor ratio discrepancy. New kinds of experimental data are needed to help constrain models and guide future box-diagram calculations. The target-normal single spin asymmetry, \(A_n\), formed with an unpolarized beam scattering from a target that is polarized normal to the scattering plane, is sensitive to the imaginary part of the two-photon exchange amplitude, and can provide a valuable constraint. A measurement with both electrons and positrons can reduce sources of experimental error, and distinguish between the effects of two-photon exchange and those of time-reversal symmetry violation. This article describes a proposed experiment in Hall A, using the new Super Big-Bite Spectrometer that can cover a momentum transfer range in the critical zone of uncertainty between where hadronic calculations and those based on partonic degrees of freedom are expected to be accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We describe a possible future experiment, and so there is no data to deposit.]

References

  1. P.A.M. Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003). https://doi.org/10.1103/PhysRevLett.91.142303

    Article  ADS  Google Scholar 

  2. P.G. Blunden, W. Melnitchouk, J.A. Tjon, Phys. Rev. Lett. 91, 142304 (2003). https://doi.org/10.1103/PhysRevLett.91.142304

    Article  ADS  Google Scholar 

  3. C.E. Carlson, M. Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. 57, 171 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123116

    Article  ADS  Google Scholar 

  4. N. Christ, T.D. Lee, Phys. Rev. 143, 1310 (1966). https://doi.org/10.1103/PhysRev.143.1310

    Article  ADS  Google Scholar 

  5. V. Glaser, B. Jaksic, Nuovo Cim. 5, 1197 (1957)

    Article  ADS  Google Scholar 

  6. D. Schildknecht, Z Phys. 201, 99 (1967)

    Article  ADS  Google Scholar 

  7. J. Bernstein, G. Feinberg, T.D. Lee, Phys. Rev. 139, B1650 (1965). https://doi.org/10.1103/PhysRev.139.B1650

    Article  ADS  Google Scholar 

  8. O. Tomalak, M. Vanderhaeghen, Eur. Phys. J. A 51(2), 24 (2015). https://doi.org/10.1140/epja/i2015-15024-1

    Article  ADS  Google Scholar 

  9. P.G. Blunden, W. Melnitchouk, Phys. Rev. C 95(6), 065209 (2017). https://doi.org/10.1103/PhysRevC.95.065209

    Article  ADS  Google Scholar 

  10. J. Ahmed, P.G. Blunden, W. Melnitchouk, Phys. Rev. C 102(4), 045205 (2020). https://doi.org/10.1103/PhysRevC.102.045205

    Article  ADS  Google Scholar 

  11. Y. Chen, A. Afanasev, S. Brodsky, C. Carlson, M. Vanderhaeghen, Phys. Rev. Lett. 93, 122301 (2004). https://doi.org/10.1103/PhysRevLett.93.122301

    Article  ADS  Google Scholar 

  12. A.V. Afanasev, S.J. Brodsky, C.E. Carlson, Y.C. Chen, M. Vanderhaeghen, Phys. Rev. D 72, 013008 (2005). https://doi.org/10.1103/PhysRevD.72.013008

    Article  ADS  Google Scholar 

  13. N. Kivel, M. Vanderhaeghen, Phys. Rev. Lett. 103, 092004 (2009). https://doi.org/10.1103/PhysRevLett.103.092004

    Article  ADS  Google Scholar 

  14. T. Powell et al., Phys. Rev. Lett. 24, 753 (1970). https://doi.org/10.1103/PhysRevLett.24.753

    Article  ADS  Google Scholar 

  15. G.V. Di Giorgio et al., Nuovo Cim. 39, 474 (1965)

    Article  Google Scholar 

  16. J.C. Bizot, J.M. Buon, J. Lefrançois, J. Perez-y Jorba, P. Roy, Phys. Rev. 140, B1387 (1965). https://doi.org/10.1103/PhysRev.140.B1387. https://link.aps.org/doi/10.1103/PhysRev.140.B1387

  17. R. Prepost, R.M. Simonds, B.H. Wiik, Phys. Rev. Lett. 21(17), 1271 (1968). https://doi.org/10.1103/PhysRevLett.21.1271

    Article  ADS  Google Scholar 

  18. J.R. Chen et al., Phys. Rev. Lett. 21, 1279 (1968). https://doi.org/10.1103/PhysRevLett.21.1279

    Article  ADS  Google Scholar 

  19. J.A. Appel et al., Phys. Rev. D 1, 1285 (1970). https://doi.org/10.1103/PhysRevD.1.1285

    Article  ADS  Google Scholar 

  20. S. Rock et al., Phys. Rev. Lett. 24, 748 (1970). https://doi.org/10.1103/PhysRevLett.24.748

    Article  ADS  Google Scholar 

  21. A. Airapetian et al., Phys. Lett. B 682, 351 (2010). https://doi.org/10.1016/j.physletb.2009.11.041

    Article  ADS  Google Scholar 

  22. J. Katich et al., Phys. Rev. Lett. 113(2), 022502 (2014). https://doi.org/10.1103/PhysRevLett.113.022502

    Article  ADS  Google Scholar 

  23. Y.W. Zhang et al., Phys. Rev. Lett. 115(17), 172502 (2015). https://doi.org/10.1103/PhysRevLett.115.172502

    Article  ADS  Google Scholar 

  24. E. Long et al., Phys. Lett. B 797, 134875 (2019). https://doi.org/10.1016/j.physletb.2019.134875

  25. A. Schmidt, A.I.P. Conf, AIP Conf. Proc. 1970(1), 020006 (2018). https://doi.org/10.1063/1.5040200

    Article  Google Scholar 

  26. C.W. de Jager et al., The Super-Bigbite Spectrometer for Jefferson Lab Hall A (Tech. rep, Jefferson Lab Conceptual Design Report, 2009)

  27. B. Wojtsekhowski, et al., Jefferson Lab E12-09-018 (2011)

  28. J. Alcorn et al., Nucl. Instrum. Method A 522, 294 (2004). https://doi.org/10.1016/j.nima.2003.11.415

    Article  ADS  Google Scholar 

  29. V.D. Burkert et al., Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419

  30. T. Averett et al., Nucl. Instrum. Method A 427, 440 (1999). https://doi.org/10.1016/S0168-9002(98)01431-4

    Article  ADS  Google Scholar 

  31. C. Keith et al., Nucl. Instrum. Method A 501, 327 (2003). https://doi.org/10.1016/S0168-9002(03)00429-7

    Article  ADS  Google Scholar 

  32. C. Keith, J. Brock, C. Carlin, S. Comer, D. Kashy, J. McAndrew, D. Meekins, E. Pasyuk, J. Pierce, M. Seely, Nucl. Instrum. Method A 684, 27 (2012). https://doi.org/10.1016/j.nima.2012.04.067

    Article  ADS  Google Scholar 

  33. J. Pierce et al., Phys. Part. Nucl. 45, 303 (2014). https://doi.org/10.1134/S1063779614010808

    Article  Google Scholar 

  34. B. Wojtsekhowski, et al., Jefferson Lab E12-09-019 (2009)

  35. B. Wojtsekhowski, et al., Jefferson Lab E12-09-016 (2009)

  36. J.R.M. Annand, et al., Jefferson Lab E12-17-004 (2017)

  37. E. Cisbani, M.K. Jones, N. Liyanage, L.P. Pentchev, A.J.R. Puckett, B. Wojtsekhowski, et al., Jefferson Lab E12-07-109 (2008)

  38. M.K. Jones et al., Phys. Rev. C 74, 035201 (2006). https://doi.org/10.1103/PhysRevC.74.035201

    Article  ADS  Google Scholar 

  39. R. Zielinski, The g2p experiment: a measurement of the Proton’s spin structure functions. Ph.D. thesis, New Hampshire U (2010)

Download references

Acknowledgements

We thank J. D. Maxwell of the Jefferson Lab target group for helpful discussions about working with transversely polarized targets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schmidt.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grauvogel, G.N., Kutz, T. & Schmidt, A. Target-normal single spin asymmetries measured with positrons. Eur. Phys. J. A 57, 213 (2021). https://doi.org/10.1140/epja/s10050-021-00531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00531-7

Navigation