Skip to main content
Log in

Mapping the electromagnetic fields of heavy-ion collisions with the Breit-Wheeler process

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Ultra-relativistic heavy-ion collisions are expected to produce the strongest electromagnetic fields in the known Universe. These highly-Lorentz contracted fields can manifest themselves as linearly polarized quasi-real photons that can interact via the Breit-Wheeler process to produce lepton anti-lepton pairs. The energy and momentum distribution of the produced dileptons carry information about the strength and spatial distribution of the colliding fields. Recently it has been demonstrated that photons from these fields can interact even in heavy-ion collisions with hadronic overlap, providing a purely electromagnetic probe of the produced medium. In this review we discuss the recent theoretical progress and experimental advances for mapping the ultra-strong electromagnetic fields produced in heavy-ion collisions via measurement of the Breit-Wheeler process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data can be acquired from the corresponding references, from which the figures/data are reproduced.]

References

  1. E. Norbeck, Phys. Today 59, 11 (2006). https://doi.org/10.1063/1.2186266

    Article  Google Scholar 

  2. V.V. Skokov, A.Y. Illarionov, V.D. Toneev, Int. J. Mod. Phys. A 24(31), 5925 (2009). https://doi.org/10.1142/S0217751X09047570

    Article  ADS  Google Scholar 

  3. L. McLerran, V. Skokov, Nucl. Phys. A 929, 184 (2014). https://doi.org/10.1016/j.nuclphysa.2014.05.008

    Article  ADS  Google Scholar 

  4. R. Battesti, J. Beard, S. Böser et al., Phys. Rep. 765–766, 1 (2018). https://doi.org/10.1016/j.physrep.2018.07.005

    Article  ADS  Google Scholar 

  5. K. Hattori, K. Itakura, Ann. Phys. 330, 23 (2013). https://doi.org/10.1016/j.aop.2012.11.010

    Article  ADS  Google Scholar 

  6. M. Asakawa, A. Majumder, B. Müller, Phys. Rev. C 81(6), 064912 (2010). https://doi.org/10.1103/PhysRevC.81.064912

    Article  ADS  Google Scholar 

  7. V. Skokov, P. Sorensen, V. Koch et al., Chin. Phys. C 41(7), 072001 (2017). https://doi.org/10.1088/1674-1137/41/7/072001

    Article  ADS  Google Scholar 

  8. D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang, High Energ. Phys. Phenomenol. (2015). https://doi.org/10.1016/j.ppnp.2016.01.001

  9. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78(7), 074033 (2008). https://doi.org/10.1103/PhysRevD.78.074033

    Article  ADS  Google Scholar 

  10. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A. (2007). https://doi.org/10.1016/j.nuclphysa.2008.02.298

  11. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 80(5), 054503 (2009). https://doi.org/10.1103/PhysRevD.80.054503

    Article  ADS  Google Scholar 

  12. F.Q. Wang, J. Zhao, Nucl. Sci. Tech. 29(12), 179 (2018). https://doi.org/10.1007/s41365-018-0520-z

    Article  Google Scholar 

  13. J. Zhao, F. Wang, Prog. Part. Nucl. Phys. 107, 200 (2019). https://doi.org/10.1016/j.ppnp.2019.05.001

    Article  ADS  Google Scholar 

  14. E. Abbas, B. Abelev, J. Adam et al., Eur. Phys. J. C 73(11), 2617 (2013). https://doi.org/10.1140/epjc/s10052-013-2617-1

    Article  ADS  Google Scholar 

  15. C.A. Bertulani, G. Baur, Phys. Rep. 163(5), 299 (1988). https://doi.org/10.1016/0370-1573(88)90142-1

    Article  ADS  Google Scholar 

  16. G. Baur, K. Hencken, D. Trautmann, Phys. Rep. 453(1), 1 (2007). https://doi.org/10.1016/j.physrep.2007.09.002

    Article  ADS  Google Scholar 

  17. S.T.A.R. Collaboration, J. Adams, M.M. Aggarwal et al., Phys. Rev. C 70(3), 031902 (2004). https://doi.org/10.1103/PhysRevC.70.031902

    Article  ADS  Google Scholar 

  18. S.T.A.R. Collaboration, J. Adam, L. Adamczyk et al., Phys. Rev. Lett. 121(13), 132301 (2018). https://doi.org/10.1103/PhysRevLett.121.132301

    Article  ADS  Google Scholar 

  19. M. Aaboud, ATLAS Collaboration et al., Phys. Rev. Lett. 121(21), 212301 (2018). https://doi.org/10.1103/PhysRevLett.121.212301

  20. S. Lehner, on behalf of the ALICE collaboration, in Proceedings of 7th Annual Conference on Large Hadron Collider Physics — PoS(LHCP2019), vol. 350 (SISSA Medialab, 2019), vol. 350, p. 164. https://doi.org/10.22323/1.350.0164

  21. S.T.A.R. Collaboration, M.S. Abdallah et al., Phys. Rev. Lett. 127(5), 052302 (2021). https://doi.org/10.1103/PhysRevLett.127.052302

    Article  ADS  Google Scholar 

  22. CMS Collaboration, arXiv:2011.05239 [hep-ex, physics:nucl-ex] (2020)

  23. S.J. Brodsky, T. Kinoshita, H. Terazawa, Phys. Rev. D 4(5), 1532 (1971). https://doi.org/10.1103/PhysRevD.4.1532

    Article  ADS  Google Scholar 

  24. V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15(4), 181 (1975). https://doi.org/10.1016/0370-1573(75)90009-5

    Article  ADS  Google Scholar 

  25. P.A. Particle Data Group, Zyla, et al., Prog. Theor. Exp. Phys. 2020(8) (2020). https://doi.org/10.1093/ptep/ptaa104

  26. S.R. Klein, J. Nystrand, J. Seger et al., Comput. Phys. Commun. 212, 258 (2017). https://doi.org/10.1016/j.cpc.2016.10.016

    Article  ADS  Google Scholar 

  27. S.R. Klein, J. Nystrand, Phys. Rev. C 60(1), 014903 (1999). https://doi.org/10.1103/PhysRevC.60.014903

    Article  ADS  Google Scholar 

  28. S.R. Klein, Phys. Rev. C 97(5), 054903 (2018). https://doi.org/10.1103/PhysRevC.97.054903

    Article  ADS  Google Scholar 

  29. M. Vidović et al., Phys. Rev. C 47, 2308 (1993). https://doi.org/10.1103/PhysRevC.47.2308

    Article  ADS  Google Scholar 

  30. K. Hencken, D. Trautmann, G. Baur, Phys. Rev. A 49(3), 1584 (1994). https://doi.org/10.1103/PhysRevA.49.1584

    Article  ADS  Google Scholar 

  31. W. Zha, J.D. Brandenburg, Z. Tang, Z. Xu, Phys. Lett. B 800, 135089 (2020). https://doi.org/10.1016/j.physletb.2019.135089

    Article  Google Scholar 

  32. C. Li, J. Zhou, Y. Zhou, Phys. Lett. B 795, 576 (2019). https://doi.org/10.1016/j.physletb.2019.07.005

    Article  ADS  Google Scholar 

  33. L. Harland-Lang, V. Khoze, M. Ryskin, Eur. Phys. J. C 79(1), 39 (2019). https://doi.org/10.1140/epjc/s10052-018-6530-5

    Article  ADS  Google Scholar 

  34. K. Hencken, D. Trautmann, G. Baur, Z. Phys. C68, 473 (1995). https://doi.org/10.1007/BF01620724

    Article  ADS  Google Scholar 

  35. C. Li, J. Zhou, Y. Zhou, Phys. Rev. D 101(3), 034015 (2020). https://doi.org/10.1103/PhysRevD.101.034015

    Article  ADS  MathSciNet  Google Scholar 

  36. G. Breit, J.A. Wheeler, Phys. Rev. 46, 1087 (1934). https://doi.org/10.1103/PhysRev.46.1087

    Article  ADS  Google Scholar 

  37. A.J. Baltz, G. Baur, D. d’Enterria et al., Phys. Rep. 458(1–3), 1 (2008). https://doi.org/10.1016/j.physrep.2007.12.001

    Article  ADS  Google Scholar 

  38. S.J. Brodsky, P.M. Zerwas, Nucl. Instrum. Method. A355(1), 19 (1995). https://doi.org/10.1016/0168-9002(94)01174-5

    Article  ADS  Google Scholar 

  39. G. Baur, N. Baron, Nucl. Phys. A 561(4), 628 (1993). https://doi.org/10.1016/0375-9474(93)90069-A

    Article  ADS  Google Scholar 

  40. S.R. Klein, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 70(1), 323 (2020). https://doi.org/10.1146/annurev-nucl-030320-033923

    Article  ADS  Google Scholar 

  41. F. Sauter, Z. Physik 69(11), 742 (1931). https://doi.org/10.1007/BF01339461

    Article  ADS  Google Scholar 

  42. W. Heisenberg, H. Euler, Z. Physik 98(11), 714 (1936). https://doi.org/10.1007/BF01343663

    Article  ADS  Google Scholar 

  43. J. Schwinger, Phys. Rev. 82(5), 664 (1951). https://doi.org/10.1103/PhysRev.82.664

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Baur, Eur. Phys. J. D 55(2), 265 (2009). https://doi.org/10.1140/epjd/e2009-00019-7

    Article  ADS  Google Scholar 

  45. K. Hencken, D. Trautmann, G. Baur, Phys. Rev. A 51(3), 1874 (1995). https://doi.org/10.1103/PhysRevA.51.1874

    Article  ADS  Google Scholar 

  46. G. Breit, J.A. Wheeler, Phys. Rev. 46(12), 1087 (1934). https://doi.org/10.1103/PhysRev.46.1087

    Article  ADS  Google Scholar 

  47. L.D. Landau, E.M. Lifshitz, Phys. Z., Phys. Zeit. Sowjet. 6, 244 (1934)

  48. ATLAS Collaboration, arXiv:2011.12211 [hep-ex, physics:nucl-ex] (2020)

  49. E. Fermi, Z. Angew. Phys. 29, 315 (1924). https://doi.org/10.1007/BF03184853

    Article  Google Scholar 

  50. C.F. Weizsäcker, Z. Physik 88(9), 612 (1934). https://doi.org/10.1007/BF01333110

    Article  ADS  Google Scholar 

  51. E.J. Williams, Phys. Rev. 45(10), 729 (1934). https://doi.org/10.1103/PhysRev.45.729

    Article  ADS  Google Scholar 

  52. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  53. R.D. Woods, D.S. Saxon, Phys. Rev. 95(2), 577 (1954). https://doi.org/10.1103/PhysRev.95.577

    Article  ADS  Google Scholar 

  54. Q.Y. Shou, Y.G. Ma, P. Sorensen et al., Phys. Lett. B 749, 215 (2015). https://doi.org/10.1016/j.physletb.2015.07.078

    Article  ADS  Google Scholar 

  55. R.C. Barrett, D.F. Jackson, Nuclear sizes and structure. (Clarendon Press, United Kingdom, 1977)

  56. H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36(3), 495 (1987). https://doi.org/10.1016/0092-640X(87)90013-1

    Article  ADS  Google Scholar 

  57. K.T.R. Davies, J.R. Nix, Phys. Rev. C 14(5), 1977 (1976). https://doi.org/10.1103/PhysRevC.14.1977

    Article  ADS  Google Scholar 

  58. M. Klusek-Gawenda, R. Rapp, W. Schäfer, A. Szczurek, Phys. Lett. B 790, 339 (2019). https://doi.org/10.1016/j.physletb.2019.01.035

    Article  ADS  Google Scholar 

  59. M. Kłusek-Gawenda, W. Schäfer, A. Szczurek, Phys. Lett. B 814, 136114 (2021). https://doi.org/10.1016/j.physletb.2021.136114

    Article  Google Scholar 

  60. W. Heisenberg, Z. Physik 43(3), 172 (1927). https://doi.org/10.1007/BF01397280

    Article  ADS  Google Scholar 

  61. ATLAS Collaboration, M. Aaboud, et al., Nat. Phys 13(9), 852 (2017). https://doi.org/10.1038/nphys4208

  62. ATLAS Collaboration, G. Aad, et al., arXiv:1904.03536 [hep-ex, physics:nucl-ex] (2019)

  63. ALICE Collaboration, J. Adam, D. Adamová, et al., Phys. Rev. Lett. 116(22), 222301 (2016). https://doi.org/10.1103/PhysRevLett.116.222301

  64. A.J. Baltz, Y. Gorbunov, S.R. Klein, J. Nystrand, Phys. Rev. C 80(4), 044902 (2009). https://doi.org/10.1103/PhysRevC.80.044902

    Article  ADS  Google Scholar 

  65. C.A. Bertulani, S.R. Klein, J. Nystrand, Annu. Rev. Nucl. Part. Sci. 55(1), 271 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151526

    Article  ADS  Google Scholar 

  66. J.D. Brandenburg, W. Li, L. Ruan, et al., arXiv:2006.07365 [hep-ph, physics:nucl-th] (2020)

  67. P.H. Stelson, F.K. McGowan, Annu. Rev. Nucl. Sci. 13(1), 163 (1963). https://doi.org/10.1146/annurev.ns.13.120163.001115

    Article  ADS  Google Scholar 

  68. J.O. Newton, B. Herskind, R.M. Diamond et al., Phys. Rev. Lett. 46(21), 1383 (1981). https://doi.org/10.1103/PhysRevLett.46.1383

    Article  ADS  Google Scholar 

  69. A. Veyssiere, H. Beil, R. Bergere et al., Nucl. Phys. A 159(2), 561 (1970). https://doi.org/10.1016/0375-9474(70)90727-X

    Article  ADS  Google Scholar 

  70. C. Adler, A. Denisov, E. Garcia et al., Nucl. Instrum. Method A470(3), 488 (2001). https://doi.org/10.1016/S0168-9002(01)00627-1

    Article  ADS  Google Scholar 

  71. R. Arnaldi, E. Chiavassa, C. Cicalò et al., Nucl. Instrum. Method A564(1), 235 (2006). https://doi.org/10.1016/j.nima.2006.03.044

    Article  ADS  Google Scholar 

  72. O.A. Grachov, M.J. Murray, A.S. Ayan et al., AIP Conf. Proc. 867(1), 258 (2006). https://doi.org/10.1063/1.2396962

    Article  ADS  Google Scholar 

  73. S. White, Nucl. Instrum. Method A617(1), 126 (2010). https://doi.org/10.1016/j.nima.2009.09.120

    Article  ADS  Google Scholar 

  74. M.B. Golubeva, F.F. Guber, A.P. Ivashkin et al., Phys. Atom. Nuclei 76(1), 1 (2013). https://doi.org/10.1134/S1063778812120046

    Article  ADS  Google Scholar 

  75. A.J. Baltz, M.J. Rhoades-Brown, J. Weneser, Phys. Rev. E 54(4), 4233 (1996). https://doi.org/10.1103/PhysRevE.54.4233

    Article  ADS  Google Scholar 

  76. I.A. Pshenichnov, Phys. Part. Nuclei 42(2), 215 (2011). https://doi.org/10.1134/S1063779611020067

    Article  ADS  Google Scholar 

  77. I.A. Pshenichnov, J.P. Bondorf, I.N. Mishustin et al., Phys. Rev. C 64(2), 024903 (2001). https://doi.org/10.1103/PhysRevC.64.024903

    Article  ADS  Google Scholar 

  78. M. Broz, J.G. Contreras, J.D.T. Takaki, Comput. Phys. Commun. 253, 107181 (2020). https://doi.org/10.1016/j.cpc.2020.107181

    Article  MathSciNet  Google Scholar 

  79. A. Leprêtre et al., Nucl. Phys. A 367(2), 237 (1981). https://doi.org/10.1016/0375-9474(81)90516-9

    Article  ADS  Google Scholar 

  80. P. Carlos et al., Nucl. Phys. A 431(4), 573 (1984). https://doi.org/10.1016/0375-9474(84)90269-0

    Article  ADS  Google Scholar 

  81. T.A. Armstrong et al., Phys. Rev. D 5, 1640 (1972). https://doi.org/10.1103/PhysRevD.5.1640

    Article  ADS  Google Scholar 

  82. D.O. Caldwell et al., Phys. Rev. D 7, 1362 (1973). https://doi.org/10.1103/PhysRevD.7.1362

    Article  ADS  Google Scholar 

  83. S. Michalowski et al., Phys. Rev. Lett. 39, 737 (1977). https://doi.org/10.1103/PhysRevLett.39.737

    Article  ADS  Google Scholar 

  84. T. Armstrong et al., Nucl. Phys. B 41(2), 445 (1972). https://doi.org/10.1016/0550-3213(72)90403-8

    Article  ADS  Google Scholar 

  85. I.A. Pshenichnov et al., Phys. Rev. C 60, 044901 (1999). https://doi.org/10.1103/PhysRevC.60.044901

    Article  ADS  Google Scholar 

  86. T. Sjöstrand, S. Ask, J.R. Christiansen et al., Comput. Phys. Commun. 191, 159 (2015). https://doi.org/10.1016/j.cpc.2015.01.024

    Article  ADS  Google Scholar 

  87. J.A.M. Vermaseren, Nucl. Phys. B 229(2), 347 (1983). https://doi.org/10.1016/0550-3213(83)90336-X

    Article  ADS  Google Scholar 

  88. L.D. Landau, E.M. Lifshitz, Phys. Z. 6, 244 (1934)

    Google Scholar 

  89. H. Bethe, W. Heitler, Proc. Roy. Soc. Lond. A 146(856), 83 (1934). https://doi.org/10.1098/rspa.1934.0140

    Article  ADS  Google Scholar 

  90. W. Zha, S.R. Klein, R. Ma et al., Phys. Rev. C 97(4), 044910 (2018). https://doi.org/10.1103/PhysRevC.97.044910

    Article  ADS  Google Scholar 

  91. S. Collaboration, Phys. Rev. Lett. 123(13), 132302 (2019). https://doi.org/10.1103/PhysRevLett.123.132302

    Article  ADS  Google Scholar 

  92. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57(1), 205 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020

    Article  ADS  Google Scholar 

  93. ALICE Collaboration, B. Abelev, J. Adam, et al., Phys. Rev. C 88(4), 044909 (2013). https://doi.org/10.1103/PhysRevC.88.044909

  94. S. Klein, A.H. Mueller, B.W. Xiao, F. Yuan, Phys. Rev. D 102(9), 094013 (2020). https://doi.org/10.1103/PhysRevD.102.094013

    Article  ADS  Google Scholar 

  95. ATLAS Collaboration, Phys. Rev. Lett. 121(21), 212301 (2018). https://doi.org/10.1103/PhysRevLett.121.212301

  96. S. Klein, A.H. Mueller, B.W. Xiao, F. Yuan, Phys. Rev. Lett. 122(13), 132301 (2019). https://doi.org/10.1103/PhysRevLett.122.132301

    Article  ADS  Google Scholar 

  97. K. Hencken et al., Phys. Rev. A 51, 1874 (1995). https://doi.org/10.1103/PhysRevA.51.1874

    Article  ADS  Google Scholar 

  98. A. Alscher et al., Phys. Rev. A 55, 396 (1997). https://doi.org/10.1103/PhysRevA.55.396

    Article  ADS  Google Scholar 

  99. G.P. Lepage, J. Comput. Phys. 27(2), 192 (1978). https://doi.org/10.1016/0021-9991(78)90004-9

    Article  ADS  MathSciNet  Google Scholar 

  100. W.B. Case, Am. J. Phys. 76(10), 937 (2008). https://doi.org/10.1119/1.2957889

    Article  ADS  Google Scholar 

  101. R.j. Wang, S. Pu, Q. Wang, arXiv:2106.05462 [hep-ph] (2021)

  102. J. Toll, (Thesis) Princeton University, (1952). https://search.proquest.com/docview/301990593/. Accessed 11 Aug 2021

  103. W.E. Lamb, R.C. Retherford, Phys. Rev. 72(3), 241 (1947). https://doi.org/10.1103/PhysRev.72.241

    Article  ADS  Google Scholar 

  104. H.B.G. Casimir, D. Polder, Phys. Rev. 73(4), 360 (1948). https://doi.org/10.1103/PhysRev.73.360

    Article  ADS  Google Scholar 

  105. R.P. Mignani, V. Testa, D.G. Caniulef et al., Mon. Not. Roy. Astron. Soc. 465(1), 492 (2017). https://doi.org/10.1093/mnras/stw2798

    Article  ADS  Google Scholar 

  106. L.M. Capparelli, A. Damiano, L. Maiani, A.D. Polosa, Eur. Phys. J. C 77(11), 754 (2017). https://doi.org/10.1140/epjc/s10052-017-5342-3

    Article  ADS  Google Scholar 

  107. F.D. Valle, A. Ejlli, U. Gastaldi et al., Eur. Phys. J. C. 76, 24 (2016). https://doi.org/10.1140/epjc/s10052-015-3869-8

    Article  ADS  Google Scholar 

  108. A. Ejlli, F. Della Valle, U. Gastaldi et al., Phys. Rept. 871, 1 (2020). https://doi.org/10.1016/j.physrep.2020.06.001

    Article  ADS  Google Scholar 

  109. E. Hecht, Optics, 5th edn. (Pearson, London, 2015)

    Google Scholar 

  110. R.L. Kronig, J. Opt. Soc. Am. 12(6), 547 (1926). https://doi.org/10.1364/JOSA.12.000547

    Article  ADS  Google Scholar 

  111. V. Dinu, T. Heinzl, A. Ilderton et al., Phys. Rev. D 89(12), 125003 (2014). https://doi.org/10.1103/PhysRevD.89.125003

    Article  ADS  Google Scholar 

  112. V. Dinu, T. Heinzl, A. Ilderton et al., Phys. Rev. D 90(4), 045025 (2014). https://doi.org/10.1103/PhysRevD.90.045025

    Article  ADS  Google Scholar 

  113. D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80(3), 034028 (2009). https://doi.org/10.1103/PhysRevD.80.034028

    Article  ADS  Google Scholar 

  114. A. Bzdak, V. Skokov, Phys. Lett. B 710(1), 171 (2012). https://doi.org/10.1016/j.physletb.2012.02.065

    Article  ADS  Google Scholar 

  115. M. Kłusek-Gawenda, A. Szczurek, Phys. Rev. C 82(1), 014904 (2010). https://doi.org/10.1103/PhysRevC.82.014904

    Article  ADS  Google Scholar 

  116. Prospects for Measurements of Photon-Induced Processes in Ultra-Peripheral Collisions of Heavy Ions with the ATLAS Detector in the LHC Runs 3 and 4 - CERN Document Server. http://cds.cern.ch/record/2641655/files/. Accessed 16 Feb 2021

  117. K. Tuchin, Phys. Rev. C 82, 034904 (2010). https://doi.org/10.1103/PhysRevC.82.034904

    Article  ADS  Google Scholar 

  118. SN0755 : The STAR Beam Use Request for Run-21, Run-22 and data taking in 2023-25 | The STAR experiment. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0755. Accessed 8 Sept 2020

  119. C. Li, J. Zhou, Y. Zhou, Phys. Lett. B 795, 576 (2019). https://doi.org/10.1016/j.physletb.2019.07.005

    Article  ADS  Google Scholar 

  120. P. Staig, E. Shuryak, arXiv:1005.3531 [nucl-th] (2010)

  121. A. Bzdak, V. Skokov, Phys. Lett. B710, 171 (2012). https://doi.org/10.1016/j.physletb.2012.02.065

    Article  ADS  Google Scholar 

  122. J. STAR Collaboration, Adams, et al., Phys. Rev. C 70, 031902 (2004). https://doi.org/10.1103/PhysRevC.70.031902

  123. S. Klein et al., Phys. Rev. Lett. 122(13), 132301 (2019). https://doi.org/10.1103/PhysRevLett.122.132301

    Article  ADS  Google Scholar 

  124. K. Hencken, G. Baur, D. Trautmann, Phys. Rev. C69, 054902 (2004). https://doi.org/10.1103/PhysRevC.69.054902

    Article  ADS  Google Scholar 

  125. W. Zha, Z. Tang, JHEP 08, 083 (2021)

    Article  ADS  Google Scholar 

  126. Z. Sun, D. Zheng, J. Zhou, Y. Zhou, Phys. Lett. B 808, 135679 (2020). https://doi.org/10.1016/j.physletb.2020.135679

    Article  MathSciNet  Google Scholar 

  127. M. Aaboud, G. Aad, B. Abbott et al., Nat. Phys. 13(9), 852 (2017). https://doi.org/10.1038/nphys4208

    Article  Google Scholar 

  128. ATLAS Collaboration, G. Aad, B. Abbott, et al., Phys. Rev. Lett. 123(5), 052001 (2019). https://doi.org/10.1103/PhysRevLett.123.052001

  129. A.M. Sirunyan, A. Tumasyan, W. Adam et al., Phys. Lett. B 797, 134826 (2019). https://doi.org/10.1016/j.physletb.2019.134826

    Article  Google Scholar 

  130. M. Bauer, M. Neubert, A. Thamm, J. High Energy Phys. 2017(12), 44 (2017). https://doi.org/10.1007/JHEP12(2017)044

    Article  Google Scholar 

  131. W. Zha, J.D. Brandenburg, L. Ruan, Z. Tang, Phys. Rev. D 103(3), 033007 (2021). https://doi.org/10.1103/PhysRevD.103.033007

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Jian Zhou, Bowen Xiao, Zebo Tang, Wei Li, Dr. Lijuan Ruan, Spencer Klein, Shuai Yang, and Chi Yang for their stimulating discussion. This work was funded by the National Natural Science Foundation of China under Grant Nos. 11775213 and 11675168, the U.S. DOE Office of Science under contract No. de-sc0012704, DE-FG02-10ER41666, and DE-AC02-98CH10886, DOE Brookhaven National Laboratory LDRD 18-037, and by MOST under Grant No. 2016YFE0104800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Brandenburg.

Additional information

Communicated by Carsten Urbach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandenburg, J.D., Zha, W. & Xu, Z. Mapping the electromagnetic fields of heavy-ion collisions with the Breit-Wheeler process. Eur. Phys. J. A 57, 299 (2021). https://doi.org/10.1140/epja/s10050-021-00595-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00595-5

Navigation