Skip to main content
Log in

Radiative corrections to the lepton current in unpolarized elastic lp-interaction for fixed \(Q^2\) and scattering angle

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The kinematical difference between the description of radiative effects for fixed \(Q^2\) vs a fixed scattering angle in the elastic lepton–proton (lp)-scattering is discussed. The technique of calculation as well as explicit expressions for radiative corrections to the lepton current in unpolarized elastic lp-scattering for these two cases are presented without using an ultrarelativistic approximation. A comparative numerical analysis within kinematic conditions of Jefferson Lab measurements and MUSE experiment in PSI is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The discussion presented in this article develops from already existing and published data which are duly referenced.]

References

  1. L. Andivahis et al., Phys. Rev. D 50, 5491 (1994)

    Article  ADS  Google Scholar 

  2. I.A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005)

    Article  ADS  Google Scholar 

  3. M.K. Jones et al., Jefferson Lab Hall A Phys. Rev. Lett. 84, 1398 (2000)

    Article  ADS  Google Scholar 

  4. O. Gayou et al., Jefferson Lab Hall A Phys. Rev. Lett. 88, 092301 (2002)

    Article  ADS  Google Scholar 

  5. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008)

    Article  ADS  Google Scholar 

  6. I. Sick, Phys. Lett. B 576, 62 (2003)

    Article  ADS  Google Scholar 

  7. R. Pohl et al., Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  8. W. Xiong et al., Nature 575, 147 (2019)

    Article  ADS  Google Scholar 

  9. A. Accardi, et al. Eur. Phys. J. A 57, 8 (2021)

  10. A. Afanasev, P.G. Blunden, D. Hasell, B.A. Raue, Prog. Part. Nucl. Phys. 95, 245–278 (2017)

    Article  ADS  Google Scholar 

  11. R. Gilman et al. (MUSE). arXiv:1709.09753

  12. A. Gasparian et al. (PRad). arXiv:2009.10510

  13. N. Kaiser, J. Phys. G 37, 115005 (2010)

    Article  ADS  Google Scholar 

  14. M. Vanderhaeghen et al., Phys. Rev. C 62, 025501 (2000)

    Article  ADS  Google Scholar 

  15. L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969)

    Article  ADS  Google Scholar 

  16. D.Y. Bardin, N.M. Shumeiko, Nucl. Phys. B 127, 242 (1977)

    Article  ADS  Google Scholar 

  17. I. Akushevich, H. Gao, A. Ilyichev, M. Meziane, Eur. Phys. J. A 51, 1 (2015)

    Article  ADS  Google Scholar 

  18. R.D. Bucoveanu, H. Spiesberger, Eur. Phys. J. A 55, 57 (2019)

    Article  ADS  Google Scholar 

  19. P. Banerjee, T. Engel, A. Signer, Y. Ulrich, SciPost Phys. 9, 027 (2020)

    Article  ADS  Google Scholar 

  20. D. Adikaram, et al., CLAS, Phys. Rev. Lett. 114, 062003 (2015)

  21. D. Rimal, et al. (CLAS), Phys. Rev. C 95(6), 065201 (2017)

  22. A. Afanasev, I. Akushevich, N. Merenkov, Phys. Rev. D 64, 113009 (2001)

    Article  ADS  Google Scholar 

  23. I. Akushevich, A. Ilyichev, Phys. Rev. D 100(3), 033005 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Afanasev, A. Ilyichev. arXiv:2007.02087

  25. B. Adams, et al. (COMPASS++/AMBER), CERN-SPSC-2019-022; SPSC-P-360. http://cds.cern.ch/record/2676885. Accessed 20 May 2021

  26. A.V. Afanasev, I. Akushevich, A. Ilyichev, B. Niczyporuk, Czech. J. Phys. 53, B449–B454 (2003). arXiv:hep-ph/0308106

    Article  Google Scholar 

  27. I. Akushevich, O.F. Filoti, A.N. Ilyichev, N. Shumeiko, Comput. Phys. Commun. 183, 1448–1467 (2012)

    Article  ADS  Google Scholar 

  28. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 153, 365–401 (1979)

Download references

Acknowledgements

The authors thank the anonymous referee of this paper for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ilyichev.

Additional information

Communicated by Nicolas Alamanos.

Appendices

Appendix A: Calculation of \(\delta _S\) and \(\delta _H\)

For calculation of \(\delta _S\) in the dimensional regularization

$$\begin{aligned} \frac{d^3k^\prime }{k^\prime _0}\rightarrow & {} \frac{d^{n-1}k^\prime }{(2\pi \mu )^{n-4}k_0} \nonumber \\= & {} \frac{2\pi ^{n/2-1}k_0^{\prime n-3}dk_0(1-x^2)^{n/2-2} dx }{(2\pi \mu )^{n-4}\varGamma (n/2-1)}, \end{aligned}$$
(A.1)

where \(x=\cos \theta \) (\(\theta \) is defined as the spatial angle between the photon three-momentum and \(\mathbf{k}^\prime _i \) (\(i=1-3\)) that are introduced below) and \(\mu \) is an arbitrary parameter of the dimension of a mass the reference system \(\mathbf{p}_1+\mathbf{q}=\mathbf{0}\) is used.

The Feynman parameterization of (59) gives

$$\begin{aligned} \mathcal{F_{IR}}= & {} \frac{1}{4k_0^{\prime 2}}\int \limits _0^1dy \Biggl [ \frac{m^2}{k_{10}^{\prime 2}(1-x\beta _1)^2} +\frac{m^2}{k_{20}^{\prime 2}(1-x\beta _2)^2} \nonumber \\&-\frac{Q^2+2m^2}{k_{30}^{\prime 2}(1-x\beta _3)^2} \Biggr ] =\frac{1}{4k_0^{\prime 2}}\int \limits _0^1dy \mathcal{F}(x,y). \end{aligned}$$
(A.2)

Here \(\beta _i=|\mathbf{k^\prime }_i|/k^\prime _{i0}\) for \(i=1,2,3\) and \(k_3=y k_1+(1-y)k_2\).

After the substitution of Eqs. (A.1) and (A.2) into the definition of \(\delta _S\) by Eq. (62) and, using \(\delta \)-function, integrated over the photon energy \(k_0\) one can find that

$$\begin{aligned} \delta _S= & {} -\frac{1}{2(4\mu \sqrt{\pi })^{n-4}\varGamma (n/2-2)}\int \limits _{-1}^1dx(1-x^2)^{n/2-2} \nonumber \\&\times \int \limits _0^1dy\mathcal{F}(x,y)\int \limits _0^{\bar{v}}\frac{dv}{v}\left( \frac{v}{M}\right) ^{n-4}. \end{aligned}$$
(A.3)

The integration over v and the expansion of the obtained expression into the Laurent series around \(n=4\) result in

$$\begin{aligned} \delta _S= & {} \delta _S^{IR}+\delta _S^1, \end{aligned}$$
(A.4)

where

$$\begin{aligned} \delta _S^{IR}= & {} -\frac{1}{2}\biggl [P_{IR}+\log \frac{\bar{v}}{\mu M }\biggr ] \int \limits _0^1dy \int \limits _{-1}^1dx {\mathcal F}(x,y) \end{aligned}$$
(A.5)

and

$$\begin{aligned} \delta _S^1= & {} -\frac{1}{4} \int \limits _0^1dy \int \limits _{-1}^1dx\log \biggl [\frac{1}{4}(1-x^2)\biggr ] {\mathcal F}(x,y). \end{aligned}$$
(A.6)

Here \(P_{IR}\) is the infrared divergent term defined by Eq. (43). Taking into account that \(k_3^2=y(1-y)Q^2+m^2\) the integration over x and y variables in \(\delta _S^{IR}\) is simple:

$$\begin{aligned} \delta _S^{IR}= & {} J_0\biggl [P_{IR}+\log \frac{\bar{v}}{\mu M }\biggr ], \end{aligned}$$
(A.7)

where \(J_0\) is defined by Eq. (42).

For the calculation of \(\delta _S^1\) we note that in the system \(\mathbf{p}_1+\mathbf{q}=\mathbf{0}\) the energies of the initial and scattering lepton through the invariants:

$$\begin{aligned} k_{10}^\prime =\frac{X}{2M^2},\qquad k_{20}^\prime =\frac{S}{2M^2}. \end{aligned}$$
(A.8)

As a result,

$$\begin{aligned} \delta _S^1= & {} \frac{1}{2} SL_S+\frac{1}{2} XL_X+S_\phi (k_1,k_2,p_2), \end{aligned}$$
(A.9)

where

$$\begin{aligned} L_S= & {} \frac{1}{\sqrt{\lambda _S}}\log \frac{S+\sqrt{\lambda _S}}{S-\sqrt{\lambda _S}}, \nonumber \\ L_X= & {} \frac{1}{\sqrt{\lambda _X}}\log \frac{X+\sqrt{\lambda _X}}{X-\sqrt{\lambda _X}}, \end{aligned}$$
(A.10)

and

$$\begin{aligned} S_\phi (k_1,k_2,p_2)= & {} \frac{Q^2+2m^2}{4}\int \limits _{-1}^1dx\int \limits _0^1dy \frac{\log [(1-x^2)/4]}{k^{\prime 2}_{30}(1-x \beta _3)^2}. \nonumber \\ \end{aligned}$$
(A.11)

Notice that the standard expressions for \(S_\phi \) are rather cumbersome, see for example Eqs. (35) and (A.14) of work [17]. In Appendix B we present a more compact analytical expression for this quantity.

For the calculation of \(\delta _H\) the straightforward integration is used. Taking into account (60), one can find that

$$\begin{aligned} \delta _H= & {} -\int \limits _{\bar{v}}^{v_{cut}}\frac{dv}{v} \int \limits _{\tau _{min}}^{\tau _{max}}d\tau F_{IR} =J_0\log \frac{v_{cut}}{\bar{v}}. \end{aligned}$$
(A.12)

Appendix B: Calculation of \(S_\phi \)

Here we present a general approach suggested by ’t Hooft and Veltman in their work [28] for a compact representation of the \(S_\phi \)-function introduced by Bardin and Shumeiko in [16]. Let us consider a real photon with a momentum k and three other time-like four-momenta \(a_i\) (\(i=1,2,3\)) with masses \(m_i^2=a_i^2\). The basic idea consists in Feynman parameterization. Instead of usual approach used in the standard Bardin-Shumeiko technique with two fermionic propagator presented in previous appendix, taken in the system \(\mathbf{a}_3=0\):

$$\begin{aligned} \frac{1}{a_1k}\frac{1}{ a_2k}=\gamma \frac{1}{a_1k} \frac{1}{\gamma a_2k}=\frac{\gamma }{k_0^2}\int \limits _0^1\frac{dy}{a_{40}^2(1-x\beta )^2}. \end{aligned}$$
(B.1)

Here, as in the previous appendix \(x=\cos \theta \), a new four-vector \(a_4=y a_1+(1-y)\gamma a_2\), and \(\beta =|\mathbf{a}_4|/a_{40}\). The quantity \(\gamma \) is choosing in such a way, that \((a_1-\gamma a_2)^2=0\), i.e. \(a_1-\gamma a_2\) is lightlike vector.

Now introduce the following invariants:

$$\begin{aligned} s_1= & {} 2a_1a_3,\; \lambda _1=s_1^2-4m_1^2m_3^2, \nonumber \\ s_2= & {} 2a_2a_3,\; \lambda _2=s_2^2-4m_2^2m_3^2, \nonumber \\ s_3= & {} 2a_1a_2,\; \lambda _3=s_3^2-4m_1^2m_2^2. \end{aligned}$$
(B.2)

Then equation \((a_1-\gamma a_2)^2=0\) has the following two solutions:

$$\begin{aligned} \gamma _1=\frac{2m_1^2}{s_3+\sqrt{\lambda _3}},\qquad \gamma _2=\frac{s_3+\sqrt{\lambda _3}}{2m_2^2}, \end{aligned}$$
(B.3)

and the generalized form of \(S_\phi \) looks as (A.11):

$$\begin{aligned} S_\phi =\frac{1}{4}\gamma s_3\int \limits _{0}^1\frac{dy}{a_{40}^2}\int \limits _{-1}^1dx \frac{\log [(1-x^2)/4]}{(1-x\beta )^2}. \end{aligned}$$
(B.4)

The first integration over x is straightforward

$$\begin{aligned} S_\phi =\frac{1}{2}\gamma s_3\int \limits _{0}^1\frac{dy}{m_4^2\beta } \log \frac{1-\beta }{1+\beta }, \end{aligned}$$
(B.5)

where \(m_4^2=a_4^2=ym_1^2+(1-y)\gamma ^2 m_2^2\). The second integration has to be performed after the standard substitutions, while taking into account that for the first two momenta \(a_{i0}=s_i/(2m_3)\).

Finally, we can find that for the general case \(S_\phi \) depends on six variables and for \(\gamma =\gamma _1\) it has the following structure:

$$\begin{aligned} S_\phi (a_1,a_2,a_3)= & {} \frac{s_3}{\sqrt{\lambda _3}} \Biggl ( \log ^2\frac{s_1+\sqrt{\lambda _1}}{2m_1m_3} -\log ^2\frac{s_2+\sqrt{\lambda _2}}{2m_2m_3} \nonumber \\&+ \, \mathrm{Li}_2\biggl [1-\frac{(s_1+\sqrt{\lambda _1})\rho }{8m_1^2m_3^2}\biggr ] \nonumber \\&+ \, \mathrm{Li}_2\biggl [1-\frac{\rho }{2(s_1+\sqrt{\lambda _1})}\biggr ] \nonumber \\&-\,\mathrm{Li}_2\biggl [1-\frac{(s_2+\sqrt{\lambda _2})\rho }{4m_3^2(s_3+\sqrt{\lambda _3})}\biggr ] \nonumber \\&-\,\mathrm{Li}_2\biggl [1-\frac{m_2^2\rho }{(s_2+\sqrt{\lambda _2})(s_3+\sqrt{\lambda _3})}\biggr ], \nonumber \\ \end{aligned}$$
(B.6)

where \(\rho =(2s_1(s_3+\sqrt{\lambda _3})-4m_1^2s_2)/\sqrt{\lambda _3} \).

It should be noted that

$$\begin{aligned} S_\phi (a_1,a_2,a_3)= S_\phi (a_2,a_1,a_3) \end{aligned}$$
(B.7)

The r.h.s. of this equation corresponds \(\gamma =\gamma _2\).

In our case \(a_1=k_1\), \(a_2=k_2\), \(a_3=p_2\), and \(s_1=X\), \(s_2=S\), \(s_3=Q^2+2m^2\), \(m_1=m_2=m\), \(m_3=M\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasev, A., Ilyichev, A. Radiative corrections to the lepton current in unpolarized elastic lp-interaction for fixed \(Q^2\) and scattering angle. Eur. Phys. J. A 57, 280 (2021). https://doi.org/10.1140/epja/s10050-021-00582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00582-w

Navigation