Skip to main content
Log in

Physical limits in the color-dipole model bounds

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The ratio of the cross-sections for the transverse and longitudinal virtual photon polarizations, \(\sigma ^{\gamma ^{*}\mathrm{p}}_\mathrm{L/T}\), at high photon–hadron energy scattering is studied. The relationship between the gluon distributions obtained using the color-dipole model and standard gluons obtained from the Dokshitzer–Gribov–Lipatov–Altarelli-Parisi (DGLAP) evolution and the Altarelli–Martinelli equations is investigated. It is shown that the color-dipole bounds are dependent on the gluon distribution behavior. This behavior is considered by expansion and Laplace-transform methods. Numerical calculations at leading order (LO) and next-to-leading order (NLO) approximations and a comparison with the color-dipole model (CDM) bounds indicate the range of validity of this method at small dipole sizes, \(r\sim 1/Q{\ll }1/Q_\mathrm{s}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: I used the H1 Collaboration data in Ref. [122] as accompanied with total errors.].

Notes

  1. These articles [77, 78] use the fact that the quark densities can be neglected at low x, and the nonsinglet contribution \(F_{2}^\mathrm{NS}\) can be ignored safely at this limit.

  2. Here, the non-singlet quark distribution becomes negligibly small in comparison with the singlet distributions.

References

  1. N.N. Nikolaev, B.G. Zakharov, Z. Phys. C 49, 607 (1991)

    Article  Google Scholar 

  2. N.N. Nikolaev, B.G. Zakharov, Z. Phys. C 53, 331 (1992)

    Article  ADS  Google Scholar 

  3. A.H. Mueller, Nucl. Phys. B 415, 373 (1994)

    Article  ADS  Google Scholar 

  4. A.H. Mueller, Nucl. Phys. B 437, 107 (1995)

    Article  ADS  Google Scholar 

  5. K. Golec-Biernat, Acta Phys. Pol. B 35, 3103 (2004)

    ADS  Google Scholar 

  6. R.J. Glauber, Phys. Rev. 99, 1515 (1955)

    Article  ADS  Google Scholar 

  7. A.H. Mueller, Nucl. Phys. B 335, 115 (1990)

    Article  ADS  Google Scholar 

  8. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59, 014017 (1998)

    Article  ADS  Google Scholar 

  9. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 60, 114023 (1999)

    Article  ADS  Google Scholar 

  10. K. Golec-Biernat, Acta Phys. Pol. B 33, 2771 (2002)

    ADS  Google Scholar 

  11. K. Golec-Biernat, J. Phys. G 28, 1057 (2002)

    Article  ADS  Google Scholar 

  12. H. Kowalski, D. Teaney, Phys. Rev. D 68, 114005 (2003)

    Article  ADS  Google Scholar 

  13. H. Kowalski, L. Motyka, G. Watt, Phys. Rev. D 74, 074016 (2006)

    Article  ADS  Google Scholar 

  14. C. Ewerz, A. von Manteuffel, O. Nachtmann, JHEP 03, 102 (2010)

    Article  ADS  Google Scholar 

  15. D. Britzger et al., Phys. Rev. D 100, 114007 (2019)

    Article  ADS  Google Scholar 

  16. C. Ewerz, A. von Manteuffel, O. Nachtmann, Phys. Rev. D 77, 074022 (2008)

    Article  ADS  Google Scholar 

  17. H. Kowalski, D. Teaney, Phys. Rev. D 68, 114005 (2003)

    Article  ADS  Google Scholar 

  18. G. Watt, H. Kowalski, Phys. Rev. D 78, 014016 (2008)

    Article  ADS  Google Scholar 

  19. A.H. Rezaeian et al., Phys. Rev. D 87, 034002 (2013)

    Article  ADS  Google Scholar 

  20. L. McLerran, arXiv:0804.1736 (2008)

  21. L. McLerran, Acta. Phys. Polon. B 45, 2307 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. F. Gelis et al., Annu. Rev. Nucl. Part. Sci. 60, 463 (2010)

    Article  ADS  Google Scholar 

  23. G.M. Peccini et al., Phys. Rev. D 101, 074042 (2020)

    Article  ADS  Google Scholar 

  24. M. Genovese, N.N. Nikolaev, B.G. Zakharov, J. Exp. Theor. Phys. 81, 633 (1995)

    ADS  Google Scholar 

  25. M. Genovese, N.N. Nikolaev, B.G. Zakharov, J. Exp. Theor. Phys. 81, 625 (1995)

    ADS  Google Scholar 

  26. A.H. Rezaeian, I. Schmidt, Phys. Rev. D D88, 074016 (2013)

    Article  ADS  Google Scholar 

  27. I. Balitsky, Nucl. Phys. B 463, 99 (1996)

    Article  ADS  Google Scholar 

  28. I. Balitsky, Phys. Rev. D 75, 014001 (2007)

    Article  ADS  Google Scholar 

  29. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999)

    Article  ADS  Google Scholar 

  30. Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000)

    Article  ADS  Google Scholar 

  31. E. Iancu, K. Itakura, S. Munier, Phys. Lett. B 590, 199 (2004)

    Article  ADS  Google Scholar 

  32. A.M. Stasto, K. Golec-Biernat, J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001)

    Article  ADS  Google Scholar 

  33. F. Gelis et al., Phys. Lett. B 647, 376 (2007)

    Article  ADS  Google Scholar 

  34. J. Kwiecinski, A.M. Stasto, Phys. Rev. D 66, 014013 (2002)

    Article  ADS  Google Scholar 

  35. D. Schildknecht, H. Spiesberger, arXiv:hep-ph/9707447 (1997)

  36. W. Buchmuller, D. Haidt, arXiv:hep-ph/9605428 (1996)

  37. M. Froissart, Phys. Rev. 123, 1053 (1961)

    Article  ADS  Google Scholar 

  38. M.M. Block, L. Durand, P. Ha, Phys. Rev. D 89(9), 094027 (2014)

    Article  ADS  Google Scholar 

  39. M.M. Block et al., Phys. Rev. D 88(1), 014006 (2013)

    Article  ADS  Google Scholar 

  40. D. Boer et al., arXiv:1108.1713 (2019)

  41. M. Klein, arXiv:1802.04317 (2019)

  42. M. Klein, Ann. Phys. 528, 138 (2016)

    Article  MathSciNet  Google Scholar 

  43. N. Armesto et al., Phys. Rev. D 100, 074022 (2019)

    Article  ADS  Google Scholar 

  44. J. Abelleira Fernandez et al., [LHeC Study Group Collaboration], J. Phys. G 39, 075001 (2012)

  45. P. Agostini et al. [LHeC Collaboration and FCC-he Study Group], CERN-ACC-Note-2020-0002, arXiv:2007.14491 (2020)

  46. A. Abada et al., [FCC Study Group Collaboration]. Eur. Phys. J. C 79, 474 (2019)

  47. L.P. Kaptari et al., Phys. Rev. D 99, 096019 (2019)

    Article  ADS  Google Scholar 

  48. B. Rezaei, G.R. Boroun, Phys. Rev. C 101, 045202 (2020a)

    Article  ADS  Google Scholar 

  49. G.R. Boroun, B. Rezaei, Nucl. Phys. A 990, 244 (2019)

    Article  ADS  Google Scholar 

  50. K. Golec-Biernat, S. Sapeta, JHEP 03, 102 (2018)

    Article  ADS  Google Scholar 

  51. J. Bartels, K. Golec-Biernat, H. Kowalski, Phys. Rev. D 66, 014001 (2002)

    Article  ADS  Google Scholar 

  52. G. Beuf, Phys. Rev. D 94, 054016 (2016)

    Article  ADS  Google Scholar 

  53. G. Beuf, Phys. Rev. D 96, 074033 (2017)

    Article  ADS  Google Scholar 

  54. G. Beuf et al., arXiv:2008.05233 (2020)

  55. B. Ducloué et al., Phys. Rev. D 96, 094017 (2017)

  56. J. Bartels et al., Phys. Rev. D 81, 054017 (2010)

  57. N.N. Nikolaev, B.G. Zakharov, Phys. Lett. B 333, 250 (1994)

    Article  ADS  Google Scholar 

  58. L. Frankfurt, A. Radyushkin, M. Strikman, Phys. Rev. D 55, 98 (1997)

    Article  ADS  Google Scholar 

  59. M. Genovese, N.N. Nikolaev, B.G. Zakharov, JETP 81, 633 (1995)

    ADS  Google Scholar 

  60. I.P. Ivanov, N.N. Nikolaev, Phys. Rev. D 65, 054004 (2002)

    Article  ADS  Google Scholar 

  61. M. Kuroda, D. Schildknecht, Phys. Lett. B 618, 84 (2005)

    Article  ADS  Google Scholar 

  62. M. Kuroda, D. Schildknecht, Acta Phys. Polon. B 37, 835 (2006)

    ADS  Google Scholar 

  63. M. Kuroda, D. Schildknecht, Phys. Lett. B 670, 129 (2008)

    Article  ADS  Google Scholar 

  64. M. Kuroda, D. Schildknecht, Phys. Rev. D 96, 094013 (2017)

    Article  ADS  Google Scholar 

  65. D. Schildknecht, M. Tentyukov, arXiv:hep-ph/0203028 (2019)

  66. M. Kuroda, D. Schildknecht, Phys. Rev. D 85, 094001 (2012)

    Article  ADS  Google Scholar 

  67. D. Schildknecht, Mod. Phys. Lett. A 29, 1430028 (2014)

    Article  ADS  Google Scholar 

  68. M. Kuroda, D. Schildknecht, Int. J. Mod. Phys. A 31, 1650157 (2016)

    Article  ADS  Google Scholar 

  69. M. Kuroda, D. Schildknecht, Phys. Rev. D 31, 094001 (2014)

    Google Scholar 

  70. D. Schildknecht, B. Surrow, M. Tentynkov, Phys. Lett. B 499, 116 (2001)

    Article  ADS  Google Scholar 

  71. G. Cvetic, D. Schildknecht, B. Surrow, M. Tentynkov, Eur. Phys. J. C 20, 77 (2001)

    Article  ADS  Google Scholar 

  72. D. Schildknecht, B. Surrow, M. Tentynkov, Mod. Phys. Lett. A 16, 1829 (2001)

    Article  ADS  Google Scholar 

  73. M. Kuroda, D. Schildknecht, Eur. Phys. J. C 37, 205 (2004)

    Article  ADS  Google Scholar 

  74. K. Prytz, Phys. Lett. B 311, 286 (1993)

    Article  ADS  Google Scholar 

  75. A.M. Cooper-Sarkar et al., Z. Phys. C 39, 281 (1988)

    Article  ADS  Google Scholar 

  76. A.M. Cooper-Sarkar et al., Acta Phys. Pol. B 34, 2911 (2003)

    ADS  Google Scholar 

  77. M.B.G. Ducati, V.P.B. Goncalves, Phys. Lett. B 390, 401 (1997)

    Article  ADS  Google Scholar 

  78. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 72, 2221 (2012)

    Article  ADS  Google Scholar 

  79. B. Rezaei, G.R. Boroun, Eur. Phys. J. A 56, 262 (2020)

    Article  ADS  Google Scholar 

  80. G.R. Boroun, B. Rezaei, Phys. Lett. B 816, 136274 (2021)

    Article  Google Scholar 

  81. F.D. Aaron et al., [H1 and ZEUS Collaborations], JHEP 1001, 109 (2010)

  82. M.M. Block, F. Halzen, Phys. Rev. Lett. 107, 212002 (2011)

    Article  ADS  Google Scholar 

  83. M.M. Block, F. Halzen, Phys. Rev. D 70, 091901 (2004)

    Article  ADS  Google Scholar 

  84. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  85. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  86. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  87. M.M. Block, Eur. Phys. J. C 65, 1 (2010)

    Article  ADS  Google Scholar 

  88. M.M. Block, L. Durand, D.W. McKay, Phys. Rev. D 79, 0140131 (2009)

    Article  Google Scholar 

  89. M.M. Block, L. Durand, D.W. McKay, Phys. Rev. D 77, 094003 (2008)

    Article  ADS  Google Scholar 

  90. M. Gluk, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)

    Article  ADS  Google Scholar 

  91. M.G. Ryskin, Y.M. Shabelski, A.G. Shuvaev, Z. Phys. C 73, 111 (1996)

    Article  Google Scholar 

  92. M.M. Block, L. Durand, D.W. McKay, Phys. Rev. D 79, 014031 (2009)

    Article  ADS  Google Scholar 

  93. M.M. Block, Eur. Phys. J. C 65, 1 (2010)

    Article  ADS  Google Scholar 

  94. F. Taghavi-Shahri, A. Mirjalili, M.M. Yazdanpanah, Eur. Phys. J. C 71, 1590 (2011)

    Article  ADS  Google Scholar 

  95. S.M.M. Nejad et al., Phys. Rev. C 94, 045201 (2016)

    Article  ADS  Google Scholar 

  96. H. Khanpour, A. Mirjalili, S.A. Tehrani, Phys. Rev. C 95, 035201 (2017)

    Article  ADS  Google Scholar 

  97. G.R. Boroun, S. Zarrin, F. Teimoury, Eur. Phys. J. Plus 130, 214 (2015)

    Article  Google Scholar 

  98. G.R. Boroun, S. Zarrin, Phys. Atom. Nucl. 78, 1034 (2015)

    Article  ADS  Google Scholar 

  99. G.R. Boroun, S. Zarrin, S. Dadfar, Nucl. Phys. A 953, 21 (2016)

    Article  ADS  Google Scholar 

  100. G.R. Boroun, S. Zarrin, S. Dadfar, Phys. Atom. Nucl. 79, 236 (2016)

    Article  ADS  Google Scholar 

  101. F.T. Azadbakht, G.R. Boroun, B. Rezaei, Int. J. Mod. Phys. E 27, 1850071 (2018)

    Article  Google Scholar 

  102. S. Dadfar, S. Zarrin, Eur. Phys. J. C 80, 319 (2020)

    Article  ADS  Google Scholar 

  103. S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005)

    Article  ADS  Google Scholar 

  104. D.I. Kazakov et al., Phys. Rev. Lett. 65, 1535 (1990)

    Article  ADS  Google Scholar 

  105. G. Altarelli, G. Martinelli, Phys. Lett. B 76, 89 (1978)

    Article  ADS  Google Scholar 

  106. N. Baruah, M.K. Das, J.K. Sarma, Few-Body Syst. 55, 1061 (2014)

    Article  ADS  Google Scholar 

  107. N. Baruah, N.M. Nath, J.K. Sarma, Int. J. Theor. Phys. 52, 2464 (2013)

    Article  Google Scholar 

  108. G.R. Boroun, Phys. Rev. C 97, 015206 (2018)

    Article  ADS  Google Scholar 

  109. G.R. Boroun, Int. J. Mod. Phys. E 18, 131 (2009)

    Article  ADS  Google Scholar 

  110. G.R. Boroun, B. Rezaei, J.K. Sarma, Int. J. Mod. Phys. A 29, 1450189 (2014)

    Article  ADS  Google Scholar 

  111. G.R. Boroun, Eur. Phys. J. Plus 129, 19 (2014)

    Article  ADS  Google Scholar 

  112. G. Beuf, Phys. Rev. D 85, 034039 (2012)

    Article  ADS  Google Scholar 

  113. M. Niedziela, M. Praszalowicz, Acta Phys. Pol. B 46, 2018 (2015)

    Article  ADS  Google Scholar 

  114. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997)

    Article  ADS  Google Scholar 

  115. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Nucl. Phys. B 510, 61 (1998)

    ADS  Google Scholar 

  116. S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 21, 443 (2001)

  117. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  118. H.L. Lai et.al. [CTEQ Collaboration], Eur. Phys. J. C 12, 375(2000)

  119. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, MRST2001. Eur. Phys. J. C 23, 73 (2002)

  120. T.-J. Hou et al., Phys. Rev. D 103, 014013 (2021)

    Article  ADS  Google Scholar 

  121. S. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Eur. Phys. J. C 81, 341 (2021)

    Article  ADS  Google Scholar 

  122. V. Andreev et al. [H1 Collaboration], Eur. Phys. J. C 74, 2814 (2014)

Download references

Acknowledgements

The author is grateful the Razi University for financial support of this project. The author is especially grateful to N. Nikolaev and D. Schildknecht for carefully reading the manuscript and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Additional information

Communicated by Andre Peshier.

Appendices

Appendix A: Details on the derivation of (26)

In this appendix, we provide a brief exposition of the derivation Eq. (26) in Ref. [77]. The evolution equations for the parton distributions are defined by

$$\begin{aligned} \frac{\partial }{\partial {\ln }Q^{2}}f_{i}(x,Q^{2})=P_{ij}(x,Q^{2}) {\otimes }f_{j}\left( x,Q^{2}\right) , \end{aligned}$$
(58)

where \(f_{i}(x,Q^{2})\) stands for the number distributions of partons in a hadron and \(\otimes \) stands for the Mellin convolution. Equation (58) represents a system of \(2n_{f}+1\) coupled integro-differential equations. The splitting functions \(P_{ij}(x,Q^{2})\) for \(N^{m}LO\) approximation are defined by \(P^{N^{m}\mathrm{LO}}_{ij}(x,Q^{2})=\sum _{k=0}^{m}a_{s}^{k+1}(Q^{2})P_{ij}^{k}(x)\) with \(a_{s}(Q^{2})=\alpha _{s}(Q^{2})/4\pi \). The flavor-singlet quark density is defined \(f_\mathrm{s}=\sum _{i=1}^{n_{f}}\left[ f_{i}+{\overline{f}}_{i}\right] \). The LO evolution equation for \(F_{2}\) at low x for four flavors is defined by

$$\begin{aligned} \frac{\partial F_{2}(x,Q^{2})}{\partial {\ln }Q^{2}}=\frac{10\alpha _{s}}{9\pi } \int _{0}^{1-x}P_\mathrm{qg}(z) G\left( \frac{x}{1-z},Q^{2}\right) \mathrm{d}z. \end{aligned}$$
(59)

Here the fact is used that at low values of x the quark density can be neglected and the nonsinglet contribution can be ignored. The authors of [77] used the expansion of the gluon distribution at an arbitrary point \(z=a\) as at the limit \(x{\rightarrow }0\), the equation obtained is

$$\begin{aligned} \frac{\partial F_{2}(x,Q^{2})}{\partial {\ln {Q^{2}}}}\simeq \frac{5\alpha _\mathrm{s}(Q^{2})}{9\pi }\frac{2}{3}G\left( \frac{x}{1-a}\left( \frac{3}{2}-a\right) ,Q^{2}\right) . \end{aligned}$$
(60)

Therefore the gluon distribution can be expressed by

$$\begin{aligned} G(x,Q^{2})=\frac{9\pi }{5\alpha _\mathrm{s}(Q^{2})}\frac{3}{2}\frac{\partial F_{2}\left( x\frac{1-a}{\frac{3}{2}-a},Q^{2}\right) }{\partial {\ln {Q^{2}}}}. \end{aligned}$$
(61)

The result of comparing them with GRV94(LO) [90] showed that the better choices have been in the range \(0.5{\le }a{\le }0.8\) and with Ryskin et al. [91] this corresponds to \(a=0.75\).

Appendix B: Details on the derivation of (32)

The gluon density used in this analysis obeys the following Laplace-transform method [92,93,94,95,96,97,98,99,100,101,102], as the coordinate transformation introduced by \(\upsilon {\equiv }{\ln }(1/x)\). Further, Eq. (31) is rewritten

$$\begin{aligned} \widehat{{\mathcal {F}}}(\upsilon ,Q^{2})=\int _{0}^{\upsilon }{\widehat{G}}(w,Q^{2}){\widehat{H}}(\upsilon -w){\mathrm{d}w}, \end{aligned}$$
(62)

where \({\widehat{H}}(\upsilon ){\equiv }e^{-\upsilon }{\widehat{K}}_\mathrm{qg}(\upsilon )\) and \({\widehat{f}}(\upsilon ,Q^{2}){\equiv }f(e^{-\upsilon },Q^{2})\) as \({\widehat{K}}_\mathrm{qg}(\upsilon )=1-2e^{-\upsilon }+2e^{-2\upsilon }\). The Laplace transform of the right-hand of Eq. (62) is defined by

$$\begin{aligned} {\mathcal {L}}\bigg [\int _{0}^{\upsilon }{\widehat{G}}(w,Q^{2}){\widehat{H}}(\upsilon -w){\mathrm{d}w};s\bigg ]=g(s){\times }h(s) \end{aligned}$$
(63)

where \(h(s){\equiv }{\mathcal {L}}[{\widehat{H}}(\upsilon );s]=\int _{0}^{\infty }{\widehat{H}}(\upsilon )e^{-s\upsilon }\mathrm{d}\upsilon \) with the condition \({\widehat{H}}(\upsilon )=0\) for \(\upsilon <0\).

The gluon distribution function in \(\upsilon \)-space is obtained in terms of the inverse transform of a product to the convolution of the original functions as

$$\begin{aligned} {\widehat{G}}(\upsilon ,Q^{2})= & {} {\mathcal {L}}^{-1}\left[ f(s,Q^{2}{\times }h^{-1}(s);\upsilon \right] \nonumber \\= & {} \int _{0}^{\upsilon }\widehat{{\mathcal {F}}}(w,Q^{2}){\widehat{J}}(\upsilon -w){\mathrm{d}w}, \end{aligned}$$
(64)

where

(65)

Therefore the explicit solution for the gluon distribution in \(\upsilon \)-space is defined in terms of the integral

(66)

Appendix C: Details of the parameterization of \(F_{L}(x,Q^{2})\)

The authors in Ref. [47] obtained two analytical relations for the longitudinal structure function at LO and NLO approximations in terms of the effective parameters of the parameterization of the proton structure function. The results show that the obtained method provides a reliable longitudinal structure function at the HERA domain and also the structure functions \(F_\mathrm{L}(x,Q^{2})\) manifestly obey the Froissart boundary conditions. The structure functions, \(F_{2}(x,Q^{2})\) and \(F_\mathrm{L}(x,Q^{2})\), and their derivatives to \(\ln Q^{2}\), are defined with respect to the singlet and gluon distribution functions \(xf_\mathrm{a}(x,Q^{2})\) as

$$\begin{aligned}&F_{k\{=2,L\}}(x,Q^{2})=<e^{2}>\sum _{a=s,g}\left[ B_{k,a}(x){\otimes }xf_{a}(x,Q^{2})\right] \nonumber \\&\quad \mathrm {and}\nonumber \\&\frac{\partial }{\partial {\ln }Q^{2}}xf_{a}(x,Q^{2})=-\frac{1}{2}\sum _{a,b=s,g}P_{ab}(x){\otimes }xf_{b}(x,Q^{2}). \end{aligned}$$
(67)

The quantities \(B_{k,a}(x)\) and \(P_{ab}(x)\) are the Wilson coefficient and splitting functions, respectively. The high order corrections to the coefficient functions can be found in Ref. [47]. With respect to the Mellin transform method, the leading order longitudinal structure function is obtained at low x by the following form:

$$\begin{aligned} F_\mathrm{L}^{\mathrm {LO}}(x,Q^{2})= & {} (1- x)^{n}\sum _{m=0}^{2}C_{m}(Q^{2})L^{m}, \end{aligned}$$
(68)

where

$$\begin{aligned} C_{2}= & {} {\widehat{A}}_{2}+\frac{8}{3}a_{s}(Q^{2})DA_{2}\nonumber \\ C_{1}= & {} {\widehat{A}}_{1}+\frac{1}{2}{\widehat{A}}_{2}+\frac{8}{3}a_{s}(Q^{2})D\left[ A_{1}+\left( 4\zeta _{2}-\frac{7}{2}\right) A_{2}\right] \nonumber \\ C_{0}= & {} {\widehat{A}}_{0}+\frac{1}{4}{\widehat{A}}_{2}-\frac{7}{8}{\widehat{A}}_{2}+\frac{8}{3}a_{s}(Q^{2})D\bigg [A_{0} +\left( 2\zeta _{2}-\frac{7}{4}\right) A_{1}\nonumber \\&+\left( \zeta _{2}-4\zeta _{3}-\frac{17}{8}\right) A_{2}\bigg ], \end{aligned}$$
(69)

and

$$\begin{aligned} {\widehat{A}}_{2}= & {} {\widetilde{A}}_{2}\nonumber \\ {\widehat{A}}_{1}= & {} {\widetilde{A}}_{1}+2DA_{2}\frac{\mu ^{2}}{\mu ^{2}+Q^{2}}\nonumber \\ {\widehat{A}}_{0}= & {} {\widetilde{A}}_{0}+DA_{1}\frac{\mu ^{2}}{\mu ^{2}+Q^{2}}\nonumber \\ {\widetilde{A}}_{i}= & {} {\widetilde{D}}A_{i}+D{\overline{A}}_{i}\frac{Q^{2}}{Q^{2}+\mu ^{2}}\nonumber \\ {\widetilde{D}}= & {} \frac{M^{2}Q^{2}\bigg [(2-\lambda )Q^{2}+\lambda M^{2}\bigg ]}{\bigg [Q^{2}+M^{2}\bigg ]^{3}}\nonumber \\ {\overline{A}}_{m}= & {} a_{m1}+2a_{m2}L_{2},~~a_{02}=0. \end{aligned}$$
(70)

The standard representation for QCD running coupling constant in the LO and NLO approximations are described by

$$\begin{aligned} a_\mathrm{s}^{\mathrm {LO}}(Q^{2})= & {} \frac{1}{\beta _{0}\ln (Q^{2}/\Lambda ^{2})}, \nonumber \\ a_\mathrm{s}^{\mathrm {NLO}}(Q^{2})= & {} \frac{1}{\beta _{0}\ln (Q^{2}/\Lambda ^{2})}-\frac{\beta _{1}{\ln }\ln (Q^{2}/\Lambda ^{2})}{\beta _{0}[\beta _{0}\ln (Q^{2}/\Lambda ^{2})]^{2}}, \end{aligned}$$
(71)

for which the QCD parameter \(\Lambda \) at LO and NLO approximations has been extracted with \(\Lambda ^\mathrm{LO}(n_\mathrm{f}=4)=136.8~\mathrm {MeV}\) and \(\Lambda ^\mathrm{NLO}(n_\mathrm{f}=4)=284.0~\mathrm {MeV}\), respectively. The QCD \(\beta \)-functions are

$$\begin{aligned} \beta _{0}=\frac{1}{3}(11C_{A}-2n_{f}),~\beta _{1}=\frac{1}{3}(34C_{A}^{2}-2n_\mathrm{f} (5C_{A}+3C_{F})) \end{aligned}$$

where \(C_{F}\) and \(C_{A}\) are the Casimir operators in the SU\((N_\mathrm{c})\) color group.

The NLO longitudinal structure function at small x is defined by

(72)

where the coefficient functions read

$$\begin{aligned} {\widehat{B}}^{(1)}_\mathrm{L,s}= & {} 8C_{F}\bigg [\frac{25}{9}n_\mathrm{f}-\frac{449}{72}C_{F}+(2C_{F}-C_{A})\nonumber \\&\left( \zeta _{3}+2\zeta _{2}-\frac{59}{72}\right) \bigg ],\nonumber \\ {\overline{B}}^{(1)}_\mathrm{L,s}= & {} \frac{20}{3}C_{F}(3C_{A}-2n_\mathrm{f})\nonumber \\ {\widehat{\delta }}^{(1)}_\mathrm{sg}= & {} \frac{26}{3}C_{A},\nonumber \\ {\overline{\delta }}^{(1)}_\mathrm{sg}= & {} 3C_{F}-\frac{347}{18}C_{A},\nonumber \\ {\widehat{R}}^{(1)}_\mathrm{L,g}= & {} -\frac{4}{3}C_{A},\nonumber \\ {\overline{R}}^{(1)}_\mathrm{L,g}= & {} -5C_{F}-\frac{4}{9}C_{A},\nonumber \\ L_{A}= & {} L+\frac{A_{1}}{2A_{2}},\nonumber \\ L_{C}= & {} L+\frac{C_{1}}{2C_{2}},\nonumber \\ L= & {} \ln (1/x)+L_{1},\nonumber \\ L_{1}= & {} {\ln }\frac{Q^{2}}{Q^{2}+\mu ^{2}}. \end{aligned}$$
(73)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroun, G.R. Physical limits in the color-dipole model bounds. Eur. Phys. J. A 57, 219 (2021). https://doi.org/10.1140/epja/s10050-021-00517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00517-5

Navigation