Skip to main content

Advertisement

Log in

Discerning nuclear pairing properties from magnetic dipole excitation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Pairing correlation of Cooper pair is a fundamental property of multi-fermion interacting systems. For nucleons, two modes of the Cooper-pair coupling may exist, namely of \(S_{12}=0\) with \(L_{12}=0\) (spin-singlet s-wave) and \(S_{12}=1\) with \(L_{12}=1\) (spin-triplet p-wave). In nuclear physics, it has been an open question whether the spin-singlet or spin-triplet coupling is dominant, as well as how to measure their role. We investigate a relation between the magnetic-dipole (M1) excitation of nuclei and the pairing modes within the framework of relativistic nuclear energy-density functional (RNEDF). The pairing correlations are taken into account by the relativistic Hartree-Bogoliubov (RHB) model in the ground state, and the relativistic quasi-particle random-phase approximation (RQRPA) is employed to describe M1 transitions. We have shown that M1 excitation properties display a sensitivity on the pairing model involved in the calculations. The systematic evaluation of M1 transitions together with the accurate experimental data enables us to discern the pairing properties in finite nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Raw data supporting our conclusions are available from the corresponding author T.O. on request.]

References

  1. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  2. D.D. Osheroff, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 28, 885 (1972)

    ADS  Google Scholar 

  3. D.D. Osheroff, W.J. Gully, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 29, 920 (1972)

    ADS  Google Scholar 

  4. A.J. Leggett, Phys. Rev. Lett. 29, 1227 (1972)

    ADS  Google Scholar 

  5. D.J. Dean, M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003)

    ADS  Google Scholar 

  6. D. Brink, R. Broglia, Nuclear Superfluidity: Pairing in Finite Systems. Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, Cambridge Monographs on Particle Physics, 2005)

  7. R.A. Broglia, V. Zelevinsky (eds.), Fifty Years of Nuclear BCS: Pairing in Finite Systems (World Scientific, Singapore, 2013)

    Google Scholar 

  8. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996)

    ADS  Google Scholar 

  9. Y. Suzuki, H. Matsumura, B. Abu-Ibrahim, Phys. Rev. C 70, 051302 (2004)

    ADS  Google Scholar 

  10. N. Sandulescu, P. Schuck, X. Viñas, Phys. Rev. C 71, 054303 (2005)

    ADS  Google Scholar 

  11. K. Hagino, N. Takahashi, H. Sagawa, Phys. Rev. C 77, 054317 (2008)

    ADS  Google Scholar 

  12. A. Bulgac, Y. Yu, Phys. Rev. Lett. 88, 042504 (2002)

    ADS  Google Scholar 

  13. A. Pastore, J. Margueron, P. Schuck, X. Viñas, Phys. Rev. C 88, 034314 (2013)

    ADS  Google Scholar 

  14. R. Tamagaki, Progr. Theor. Phys. 39(1), 91 (1968)

    ADS  Google Scholar 

  15. R. Tamagaki, Progr. Theor. Phys. 44(4), 905 (1970)

    ADS  Google Scholar 

  16. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    ADS  Google Scholar 

  17. J.F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)

    ADS  Google Scholar 

  18. Y. Suzuki, K. Ikeda, Phys. Rev. C 38, 410 (1988)

    ADS  Google Scholar 

  19. T. Myo, S. Aoyama, K. Katō, K. Ikeda, Phys. Lett. B 576(3–4), 281 (2003)

    ADS  Google Scholar 

  20. T. Myo, R. Ando, K. Katō, Phys. Lett. B 691(3), 150 (2010)

    ADS  Google Scholar 

  21. T. Oishi, K. Hagino, H. Sagawa, Phys. Rev. C 90, 034303 (2014)

    ADS  Google Scholar 

  22. T. Oishi, N. Paar, Phys. Rev. C 100, 024308 (2019)

    ADS  Google Scholar 

  23. T. Oishi, G. Kružić, N. Paar, J. Phys. G: Nucl. Part. Phys. 47, 115106 (2020)

    ADS  Google Scholar 

  24. A. Richter, Progr. Part. Nucl. Phys. 13, 1 (1985)

    ADS  Google Scholar 

  25. A. Richter, Nucl. Phys. A 507(1), 99 (1990)

    ADS  Google Scholar 

  26. K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010). and references therein

    ADS  Google Scholar 

  27. N. Pietralla, P. von Brentano, A. Lisetskiy, Progr. Part. Nucl. Phys. 60(1), 225 (2008)

    ADS  Google Scholar 

  28. Y. Fujita, B. Rubio, W. Gelletly, Progr. Particle Nucl. Phys. 66(3), 549 (2011)

    ADS  Google Scholar 

  29. F. Grümmer, J. Speth, J. Phys. G: Nucl. Part. Phys. 32(7), R193 (2006)

    ADS  Google Scholar 

  30. P. Vesely, J. Kvasil, V.O. Nesterenko, W. Kleinig, P.G. Reinhard, V.Y. Ponomarev, Phys. Rev. C 80, 031302(R) (2009)

    ADS  Google Scholar 

  31. V.O. Nesterenko, J. Kvasil, P. Vesely, W. Kleinig, P.G. Reinhard, V.Y. Ponomarev, J. Phys. G: Nucl. Part. Phys. 37(6), 064034 (2010)

    ADS  Google Scholar 

  32. V.O. Nesterenko, J. Kvasil, P. Vesely, W. Kleinig, P.G. Reinhard, Int. J. Mod. Phys. E 19, 558 (2010)

    ADS  Google Scholar 

  33. V. Tselyaev, N. Lyutorovich, J. Speth, P.G. Reinhard, D. Smirnov, Phys. Rev. C 99, 064329 (2019)

    ADS  Google Scholar 

  34. J. Speth, P.G. Reinhard, V. Tselyaev, N. Lyutorovich, (2020), Preprint at arXiv: 2001.07236

  35. G. Kružić, T. Oishi, D. Vale, N. Paar, Phys. Rev. C 102, 044315 (2020)

    ADS  Google Scholar 

  36. J.D. Walecka, Ann. Phys. 83, 491 (1974)

    ADS  Google Scholar 

  37. J. Boguta, A. Bodmer, Nucl. Phys. A 292, 413 (1977)

    ADS  Google Scholar 

  38. P.G. Reinhard, Rep. Progr. Phys. 52, 439 (1989)

    ADS  Google Scholar 

  39. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005). and references therein

    ADS  Google Scholar 

  40. J. Meng, H. Toki, S. Zhou, S. Zhang, W. Long, L. Geng, Progr. Part. Nucl. Phys. 57(2), 470 (2006)

    ADS  Google Scholar 

  41. J.P. Ebran, A. Mutschler, E. Khan, D. Vretenar, Phys. Rev. C 94, 024304 (2016)

    ADS  Google Scholar 

  42. N. Paar, P. Ring, T. Nikšić, D. Vretenar, Phys. Rev. C 67, 034312 (2003)

    ADS  Google Scholar 

  43. T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008)

    ADS  Google Scholar 

  44. T. Nikšić, N. Paar, D. Vretenar, P. Ring, Comput. Phys. Commun. 185(6), 1808 (2014)

    ADS  Google Scholar 

  45. D. Kurath, Phys. Rev. 130, 1525 (1963)

    ADS  Google Scholar 

  46. J. Eisenber, W. Greiner, Nuclear Theory Volume 2: Excitation Mechanisms of the Nucleus (North-Holland Publishing Company, Amsterdam, 1970)

  47. P. von Neumann-Cosel, A. Poves, J. Retamosa, A. Richter, Phys. Lett. B 443(1), 1 (1998)

    ADS  Google Scholar 

  48. A. Richter, A. Weiss, O. Haüsser, B.A. Brown, Phys. Rev. Lett. 65, 2519 (1990)

    ADS  Google Scholar 

  49. L.E. Marcucci, M. Pervin, S.C. Pieper, R. Schiavilla, R.B. Wiringa, Phys. Rev. C 78, 065501 (2008)

    ADS  Google Scholar 

  50. S. Moraghe, J. Amaro, C. García-Recio, A. Lallena, Nucl. Phys. A 576(4), 553 (1994)

    ADS  Google Scholar 

  51. G.F. Bertsch, I. Hamamoto, Phys. Rev. C 26, 1323 (1982)

    ADS  Google Scholar 

  52. M. Ichimura, H. Sakai, T. Wakasa, Progr. Part. Nucl. Phys. 56(2), 446 (2006)

    ADS  Google Scholar 

  53. http://www.nndc.bnl.gov/chart/. “Chart of Nuclides”, National Nuclear Data Center (NNDC); http://www.nndc.bnl.gov/chart/

  54. I. Angeli, K. Marinova, Atomic Data Nucl. Data Tables 99(1), 69 (2013)

    ADS  Google Scholar 

  55. S. Hilaire, M. Girod, The European Physical Journal A 33, 237 (2007), with data at [http://www-phynu.cea.fr/ science_en_ligne/ carte_potentiels_microscopiques/ carte_potentiel_nucleaire_eng.htm]

  56. S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009)

    ADS  Google Scholar 

  57. L.M. Robledo, R. Bernard, G.F. Bertsch, Phys. Rev. C 86, 064313 (2012)

    ADS  Google Scholar 

  58. D. Thompson, M. Lemere, Y. Tang, Nucl. Phys. A 286(1), 53 (1977)

    ADS  Google Scholar 

  59. E. Yüksel, T. Marketin, N. Paar, Phys. Rev. C 99, 034318 (2019)

    ADS  Google Scholar 

  60. S. Goriely, S. Hilaire, S. Péru, M. Martini, I. Deloncle, F. Lechaftois, Phys. Rev. C 94, 044306 (2016)

    ADS  Google Scholar 

  61. N. Hinohara, Phys. Rev. C 100, 024310 (2019)

    ADS  Google Scholar 

  62. G. Crawley, C. Djalali, N. Marty, Report of Inst. de Physique Nucleaire 15, IPNO DRE 83 15 (1983)

  63. D.I. Sober, B.C. Metsch, W. Knüpfer, G. Eulenberg, G. Küchler, A. Richter, E. Spamer, W. Steffen, Phys. Rev. C 31, 2054 (1985)

    ADS  Google Scholar 

  64. Y. Tanimura, K. Hagino, H. Sagawa, Phys. Rev. C 86, 044331 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

We especially thank Tamara Nikšić and Dario Vretenar for fruitful discussions. This work is supported by the “QuantiXLie Centre of Excellence”, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund, the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Oishi.

Additional information

Communicated by Michael Bender.

Appendix A: Comparison of pairing models

Appendix A: Comparison of pairing models

In the main text, we have utilized the D1S and S1P-pairing models combined with the relativistic DD-PC1 interaction for the RHB calculations. In this Appendix, we check the consistency between D1S and S1P in terms of the binding energies for open-shell nuclei. We perform the RHB calculations for the Sn and Pb isotopes by keeping the same setting and parameters used in the main text for Ca isotopes.

In Fig. 7, our RHB results for Sn and Pb isotopes are displayed. The D1S and S1P-pairing models show a good agreement in terms of the binding energies per nucleon, E/A. Namely, they have the same quality on the reproduction of the ground-state energies of open-shell nuclei. Notice also that their results exactly coincide for the doubly-magic nuclei. The error from the experimental E/A data is, even at maximum, less than 0.1 MeV throughout the Ca, Sn, and Pb isotopes. We have also checked that the RHB results, which include the pairing strength, quasiparticle spectrum, and charge radii, are well equivalent between the DD-PC1+D1S and DD-PC1+S1P cases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oishi, T., Kružić, G. & Paar, N. Discerning nuclear pairing properties from magnetic dipole excitation. Eur. Phys. J. A 57, 180 (2021). https://doi.org/10.1140/epja/s10050-021-00488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00488-7

Navigation