Skip to main content
Log in

g-Factor and static quadrupole moment of \(^{135}\)Pr, \(^{105}\)Pd, and \(^{187}\)Au in wobbling motion

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The g-factor and static quadrupole moment of the nuclides \(^{135}\)Pr, \(^{105}\)Pd, and \(^{187}\)Au in the wobbling motion are investigated in the particle-rotor model as functions of the total spin I. The g-factor of \(^{105}\mathrm {Pd}\) increases with increasing I, due to the negative gyromagnetic factor of a valence-neutron. This behavior is in contrast to the decreasing g-factor of the other two nuclides, \(^{135}\)Pr and \(^{187}\)Au, which feature a valence-proton. The static quadrupole moment Q depends on all three expectation values of the total angular momentum. It is smaller in the yrast band than in the wobbling band for the transverse wobblers \(^{135}\)Pr and \(^{105}\)Pd, while larger for the longitudinal wobbler \(^{187}\)Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a theoretical study with particle-rotor model calculations, and there are no experimental data associated. All model calculations have been explained with references and our procedures are described also in details.]

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975)

    MATH  Google Scholar 

  2. S. Frauendorf and F. Dönau, Phys. Rev. C 89, 014322 (2014)

    Article  ADS  Google Scholar 

  3. N. Sensharma, U. Garg, Q. B. Chen, S. Frauendorf, D. P. Burdette, J. L. Cozzi, K. B. Howard, S. Zhu, M. P. Carpenter, P. Copp, et al., Phys. Rev. Lett. 124, 052501 (2020)

    Article  ADS  Google Scholar 

  4. S. Nandi, G. Mukherjee, Q. B. Chen, S. Frauendorf, R. Banik, S. Bhattacharya, S. Dar, S. Bhattacharyya, C. Bhattacharya, S. Chatterjee, et al., Phys. Rev. Lett. 125, 132501 (2020)

    Article  ADS  Google Scholar 

  5. P. Bringel, G. B. Hagemann, H. Hübel, A. Al-khatib, P. Bednarczyk, A. Bürger, D. Curien, G. Gangopadhyay, B. Herskind, D. R. Jensen, et al., Eur. Phys. J. A 24, 167 (2005)

    Article  ADS  Google Scholar 

  6. S. W. Ødegård, G. B. Hagemann, D. R. Jensen, M. Bergström, B. Herskind, G. Sletten, S. Törmänen, J. N. Wilson, P. O. Tjøm, I. Hamamoto, et al., Phys. Rev. Lett. 86, 5866 (2001)

    Article  ADS  Google Scholar 

  7. D. R. Jensen, G. B. Hagemann, I. Hamamoto, S. W. Ødegård, B. Herskind, G. Sletten, J. N. Wilson, K. Spohr, H. Hübel, P. Bringel, et al., Phys. Rev. Lett. 89, 142503 (2002)

    Article  ADS  Google Scholar 

  8. G. Schönwaßer, H. Hübel, G. B. Hagemann, P. Bednarczyk, G. Benzoni, A. Bracco, P. Bringel, R. Chapman, D. Curien, J. Domscheit, et al., Phys. Lett. B 552, 9 (2003)

    Article  ADS  Google Scholar 

  9. H. Amro, W. C. Ma, G. B. Hagemann, R. M. Diamond, J. Domscheit, P. Fallon, A. Gorgen, B. Herskind, H. Hübel, D. R. Jensen, et al., Phys. Lett. B 553, 197 (2003)

    Article  ADS  Google Scholar 

  10. D. J. Hartley, R. V. F. Janssens, L. L. Riedinger, M. A. Riley, A. Aguilar, M. P. Carpenter, C. J. Chiara, P. Chowdhury, I. G. Darby, U. Garg, et al., Phys. Rev. C 80, 041304(R) (2009)

    Article  ADS  Google Scholar 

  11. J. T. Matta, U. Garg, W. Li, S. Frauendorf, A. D. Ayangeakaa, D. Patel, K. W. Schlax, R. Palit, S. Saha, J. Sethi, et al., Phys. Rev. Lett. 114, 082501 (2015)

    Article  ADS  Google Scholar 

  12. N. Sensharma, U. Garg, S. Zhu, A. D. Ayangeakaa, S. Frauendorf, W. Li, G. Bhat, J. A. Sheikh, M. P. Carpenter, Q. B. Chen, et al., Phys. Lett. B 792, 170 (2019)

    Article  ADS  Google Scholar 

  13. S. Biswas, R. Palit, S. Frauendorf, U. Garg, W. Li, G. H. Bhat, J. A. Sheikh, J. Sethi, S. Saha, P. Singh, et al., Eur. Phys. J. A 55, 159 (2019)

    Article  ADS  Google Scholar 

  14. C. M. Petrache, P. M. Walker, S. Guo, Q. B. Chen, S. Frauendorf, Y. X. Liu, R. A. Wyss, D. Mengoni, Y. H. Qiang, A. Astier, et al., Phys. Lett. B 795, 241 (2019)

    Article  ADS  Google Scholar 

  15. Q. B. Chen, S. Frauendorf, and C. M. Petrache, Phys. Rev. C 100, 061301(R) (2019)

    Article  ADS  Google Scholar 

  16. S. Chakraborty, H. P. Sharma, S. S. Tiwary, C. Majumder, A. K. Gupta, P. Banerjee, S. Ganguly, S. Rai, D Pragati, D Mayank, et al., Phys. Lett. B 811, 135854 (2020)

    Article  Google Scholar 

  17. J. Timár, Q. B. Chen, B. Kruzsicz, D. Sohler, I. Kuti, S. Q. Zhang, J. Meng, P. Joshi, R. Wadsworth, K. Starosta, et al., Phys. Rev. Lett. 122, 062501 (2019)

    Article  ADS  Google Scholar 

  18. M. S. R. Laskar, R. Palit, S. N. Mishra, N. Shimizu, Y. Utsuno, E. Ideguchi, U. Garg, S. Biswas, F. S. Babra, R. Gala, et al., Phys. Rev. C 101, 034315 (2020)

    Article  ADS  Google Scholar 

  19. Q.B. Chen, S. Frauendorf, N. Kaiser, U.-G. Meißner, J. Meng, Phys. Lett. B 807, 135596 (2020)

    Article  Google Scholar 

  20. I. Hamamoto, Phys. Rev. C 65, 044305 (2002)

    Article  ADS  Google Scholar 

  21. I. Hamamoto and B. R. Mottelson, Phys. Rev. C 68, 034312 (2003)

    Article  ADS  Google Scholar 

  22. W. X. Shi and Q. B. Chen, Chin. Phys. C 39, 054105 (2015)

    Article  ADS  Google Scholar 

  23. E. Streck, Q. B. Chen, N. Kaiser, and U.-G. Meißner, Phys. Rev. C 98, 044314 (2018)

    Article  ADS  Google Scholar 

  24. R. Budaca, Phys. Rev. C 97, 024302 (2018)

    Article  ADS  Google Scholar 

  25. Q.B. Chen, N. Kaiser, U.-G. Meißner, J. Meng, arXiv:nucl-th/2003.04065 (2020)

  26. B. Qi, H. Zhang, S.Y. Wang, Q.B. Chen, J. Phys. G: Nucl. Part. Phys. 48, 055102 (2021)

    Article  ADS  Google Scholar 

  27. Q.B. Chen, S. Frauendorf, arXiv:nucl-th/2012.03499 (2020)

  28. Q. B. Chen, N. Kaiser, U.-G. Meißner, and J. Meng, Phys. Lett. B 807, 135568 (2020c)

    Article  Google Scholar 

  29. A. Landé, Z. Phys. 5, 231 (1921)

    Article  ADS  Google Scholar 

  30. Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A 588, 559 (1995)

    Article  ADS  Google Scholar 

  31. M. Matsuzaki, Y. R. Shimizu, and K. Matsuyanagi, Phys. Rev. C 65, 041303 (2002)

    Article  ADS  Google Scholar 

  32. Y. R. Shimizu, T. Shoji, and M. Matsuzaki, Phys. Rev. C 77, 024319 (2008)

    Article  ADS  Google Scholar 

  33. S. Frauendorf and F. Dönau, Phys. Rev. C 92, 064306 (2015)

    Article  ADS  Google Scholar 

  34. Q. B. Chen, S. Q. Zhang, P. W. Zhao, and J. Meng, Phys. Rev. C 90, 044306 (2014)

    Article  ADS  Google Scholar 

  35. Q. B. Chen, S. Q. Zhang, and J. Meng, Phys. Rev. C 94, 054308 (2016)

    Article  ADS  Google Scholar 

  36. J. A. Sheikh, G. H. Bhat, W. A. Dar, S. Jehangir, and P. A. Ganai, Phys. Scr. 91, 063015 (2016)

    Article  ADS  Google Scholar 

  37. M. Shimada, Y. Fujioka, S. Tagami, and Y. R. Shimizu, Phys. Rev. C 97, 024319 (2018)

    Article  ADS  Google Scholar 

  38. Y. K. Wang, F. Q. Chen, and P. W. Zhao, Phys. Lett. B 802, 135246 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided in parts by Deutsche Forschungsgemeinschaft (DFG) and National Natural Science Foundation of China (NSFC) through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (DFG Project-ID 196253076—TRR110, NSFC Grant no. 12070131001). The work of UGM was also supported by the Chinese Academy of Sciences (CAS) through a President’s International Fellowship Initiative (PIFI) (Grant no. 2018DM0034) and by the Volkswagen Stiftung (Grant No. 93562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. B. Chen.

Additional information

Communicated by Michael Bender

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broocks, C., Chen, Q.B., Kaiser, N. et al. g-Factor and static quadrupole moment of \(^{135}\)Pr, \(^{105}\)Pd, and \(^{187}\)Au in wobbling motion. Eur. Phys. J. A 57, 161 (2021). https://doi.org/10.1140/epja/s10050-021-00482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00482-z

Navigation