Skip to main content
Log in

Beam charge asymmetries for deeply virtual Compton scattering off the proton

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The unpolarized and polarized Beam Charge Asymmetries (BCAs) of the \(\vec {e}^{\pm }p \rightarrow e^{\pm }p \gamma \) process off unpolarized hydrogen are discussed. The measurement of BCAs with the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility, using polarized positron and electron beams at 10.6 GeV is investigated. This experimental configuration allows to measure azimuthal and t-dependences of the unpolarized and polarized BCAs over a large \((x_B,Q^2)\) phase space, providing a direct access to the real part of the Compton Form Factor (CFF) \({{\mathcal {H}}}\). Additionally, these measurements confront the Bethe-Heitler dominance hypothesis and eventual effects beyond leading twist. The impact of potential positron beam data on the determination of CFFs is also investigated within a local fitting approach of experimental observables. Positron data are shown to strongly reduce correlations between CFFs and consequently improve significantly the determination of \(\mathfrak {R}\mathrm{e} [{\mathcal {H}}]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The present work involves only simulated pseudo-data.]

References

  1. D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořejši, Fortsch. Phys. 42, 101 (1994). https://doi.org/10.1002/prop.2190420202

    Article  ADS  Google Scholar 

  2. M. Diehl, Phys. Rep. 388, 41 (2003). https://doi.org/10.1016/j.physrep.2003.08.002

    Article  ADS  Google Scholar 

  3. A. Belitsky, A. Radyushkin, Phys. Rep. 418(1), 1 (2005). https://doi.org/10.1016/j.physrep.2005.06.002

    Article  ADS  Google Scholar 

  4. X.D. Ji, Phys. Rev. Lett. 91, 062001 (2003). https://doi.org/10.1103/PhysRevLett.91.062001

    Article  ADS  Google Scholar 

  5. A.V. Belitsky, X.d. Ji, F. Yuan, Phys. Rev. D 69, 074014 (2004). https://doi.org/10.1103/PhysRevD.69.074014

  6. X.D. Ji, Phys. Rev. Lett. 78, 610 (1997). https://doi.org/10.1103/PhysRevLett.78.610

    Article  ADS  Google Scholar 

  7. M. Polyakov, Phys. Lett. B 555, 57 (2003). https://doi.org/10.1016/S0370-2693(03)00036-4

    Article  ADS  Google Scholar 

  8. V. Burkert, L. Elouadrhiri, F. Girod, Nature 557(7705), 396 (2018). https://doi.org/10.1038/s41586-018-0060-z

    Article  ADS  Google Scholar 

  9. M. Diehl, in CLAS12 European Workshop, Genova (Italy) (2009)

  10. V. Burkert et al., Nucl. Instrum. Meth. A 959, 163419 (2020). https://doi.org/10.1016/j.nima.2020.163419

    Article  Google Scholar 

  11. J. Grames, E. Voutier, et al., Jefferson Lab LOI12-18-004 (2018)

  12. A. Accardi, et al., arXiv:2007.15081 (2020)

  13. M. Defurne et al., Nat. Commun. 8(1), 1408 (2017). https://doi.org/10.1038/s41467-017-01819-3

    Article  ADS  Google Scholar 

  14. M. Burkardt, arXiv:0711.1881 (2007)

  15. M. Burkardt, Phys. Rev. D 62, 094003 (2000). https://doi.org/10.1103/PhysRevD.62.094003

    Article  ADS  Google Scholar 

  16. J.P. Ralston, B. Pire, Phys. Rev. D 66, 111501 (2002). https://doi.org/10.1103/PhysRevD.66.111501

    Article  ADS  Google Scholar 

  17. M. Diehl, Eur. Phys. J. C 25, 223 (2002). https://doi.org/10.1007/s10052-002-1016-9. [Erratum: Eur. Phys. J. C 31 277 (2003)]

  18. A. Belitsky, D. Müller, Nucl. Phys. A 711, 118 (2002). https://doi.org/10.1016/S0375-9474(02)01202-2

    Article  ADS  Google Scholar 

  19. I. Anikin, O. Teryaev, Phys. Rev. D 76, 056007 (2007). https://doi.org/10.1103/PhysRevD.76.056007

    Article  ADS  Google Scholar 

  20. M. Diehl, D.Y. Ivanov, Eur. Phys. J. C 52, 919 (2007). https://doi.org/10.1140/epjc/s10052-007-0401-9

    Article  ADS  Google Scholar 

  21. M. Polyakov, Phys. Lett. B 659, 542 (2008). https://doi.org/10.1016/j.physletb.2007.11.012

    Article  ADS  Google Scholar 

  22. M. Polyakov, C. Weiss, Phys. Rev. D 60, 114017 (1999). https://doi.org/10.1103/PhysRevD.60.114017

    Article  ADS  Google Scholar 

  23. M. Polyakov, P. Schweitzer, Int. J. Mod. Phys. A 33(26), 1830025 (2018). https://doi.org/10.1142/S0217751X18300259

    Article  ADS  Google Scholar 

  24. K. Kumerički, Nature 570(7759), E1 (2019). https://doi.org/10.1038/s41586-019-1211-6

    Article  ADS  Google Scholar 

  25. F. Aaron et al., Phys. Lett. B 681, 391 (2009). https://doi.org/10.1016/j.physletb.2009.10.035

    Article  ADS  Google Scholar 

  26. A. Airapetian et al., JHEP 06, 066 (2008). https://doi.org/10.1088/1126-6708/2008/06/066

    Article  Google Scholar 

  27. A. Airapetian et al., JHEP 11, 083 (2009). https://doi.org/10.1088/1126-6708/2009/11/083

    Article  Google Scholar 

  28. A. Airapetian et al., JHEP 07, 032 (2012). https://doi.org/10.1007/JHEP07(2012)032

    Article  ADS  Google Scholar 

  29. R. Akhunzyanov et al., Phys. Lett. B 793, 188 (2019). https://doi.org/10.1016/j.physletb.2019.04.038

    Article  ADS  Google Scholar 

  30. A. Belitsky, D. Müller, Phys. Rev. D 82, 074010 (2010). https://doi.org/10.1103/PhysRevD.82.074010

    Article  ADS  Google Scholar 

  31. K. Kumerički, D. Müller, Nucl. Phys. B 841, 1 (2010). https://doi.org/10.1016/j.nuclphysb.2010.07.015

    Article  ADS  Google Scholar 

  32. B. Berthou et al., Eur. Phys. J. C 78(6), 478 (2018). https://doi.org/10.1140/epjc/s10052-018-5948-0

    Article  ADS  Google Scholar 

  33. M. Vanderhaeghen, P.A. Guichon, M. Guidal, Phys. Rev. D 60, 094017 (1999). https://doi.org/10.1103/PhysRevD.60.094017

    Article  ADS  Google Scholar 

  34. V. Burkert, L. Elouadrhiri, F.X. Girod, S. Niccolai, E. Voutier, et al., Jefferson Lab PR12-20-009 (2020)

  35. D. Abbott et al., Phys. Rev. Lett. 116(21), 214801 (2016). https://doi.org/10.1103/PhysRevLett.116.214801

    Article  ADS  Google Scholar 

  36. A. Afanasev, P.G. Blunden, D. Hasell, B.A. Raue, Prog. Part. Nucl. Phys. 95, 245 (2017). https://doi.org/10.1016/j.ppnp.2017.03.004

    Article  ADS  Google Scholar 

  37. M. Guidal, Eur. Phys. J. A 37, 319 (2008). https://doi.org/10.1140/epja/i2008-10630-6. [Erratum: Eur. Phys. J. A 40, 119 (2009)]

  38. K. Kumerički, D. Müller, A. Schäfer, JHEP 1107, 073 (2011). https://doi.org/10.1007/JHEP07(2011)073

    Article  ADS  Google Scholar 

  39. H. Moutarde, P. Sznajder, J. Wagner, Eur. Phys. J. C 79, 614 (2019). https://doi.org/10.1140/epjc/s10052-019-7117-5

    Article  ADS  Google Scholar 

  40. E.C. Aschenauer, S. Fazio, K. Kumerički, D. Müller, JHEP 09, 093 (2013). https://doi.org/10.1007/JHEP09(2013)093

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This article is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under agreement STRONG - 2020 - No 824093. It is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E. Voutier.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkert, V., Elouadrhiri, L., Girod, FX. et al. Beam charge asymmetries for deeply virtual Compton scattering off the proton. Eur. Phys. J. A 57, 186 (2021). https://doi.org/10.1140/epja/s10050-021-00474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00474-z

Navigation