Skip to main content
Log in

Deeply virtual Compton scattering at a proposed high-luminosity Electron-Ion Collider

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Several observables for the deeply virtual Compton scattering process have been simulated in the kinematic regime of a proposed Electron-Ion Collider to explore the possible impact of such measurements for the phenomenological access of generalized parton distributions. In particular, emphasis is given to the transverse distribution of sea quarks and gluons and how such measurements can provide information on the angular momentum sum rule. The exact lepton energy loss dependence for the unpolarized t-differential electroproduction cross section, needed for a Rosenbluth separation, is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H1 collaboration, C. Adloff et al., Measurement of deeply virtual Compton scattering at HERA, Phys. Lett. B 517 (2001) 47 [hep-ex/0107005] [INSPIRE].

    ADS  Google Scholar 

  2. ZEUS collaboration, S. Chekanov et al., Measurement of deeply virtual Compton scattering at HERA, Phys. Lett. B 573 (2003) 46 [hep-ex/0305028] [INSPIRE].

    ADS  Google Scholar 

  3. H1 collaboration, A. Aktas et al., Measurement of deeply virtual Compton scattering at HERA, Eur. Phys. J. C 44 (2005) 1 [hep-ex/0505061] [INSPIRE].

    ADS  Google Scholar 

  4. H1 collaboration, F. Aaron et al., Measurement of deeply virtual Compton scattering and its t-dependence at HERA, Phys. Lett. B 659 (2008) 796 [arXiv:0709.4114] [INSPIRE].

    ADS  Google Scholar 

  5. ZEUS collaboration, S. Chekanov et al., A measurement of the Q 2 , W and t dependences of deeply virtual Compton scattering at HERA, JHEP 05 (2009) 108 [arXiv:0812.2517] [INSPIRE].

    ADS  Google Scholar 

  6. H1 collaboration, F. Aaron et al., Deeply virtual Compton scattering and its beam charge asymmetry in e ± collisions at HERA, Phys. Lett. B 681 (2009) 391 [arXiv:0907.5289] [INSPIRE].

    ADS  Google Scholar 

  7. HERMES collaboration, A. Airapetian et al., The beam-charge azimuthal asymmetry and deeply virtual Compton scattering, Phys. Rev. D 75 (2007) 011103 [hep-ex/0605108] [INSPIRE].

    ADS  Google Scholar 

  8. HERMES collaboration, A. Airapetian et al., Measurement of azimuthal asymmetries with respect to both beam charge and transverse target polarization in exclusive electroproduction of real photons, JHEP 06 (2008) 066 [arXiv:0802.2499] [INSPIRE].

    Google Scholar 

  9. HERMES collaboration, A. Airapetian et al., Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process in measurements on a hydrogen target, JHEP 11 (2009) 083 [arXiv:0909.3587] [INSPIRE].

    Google Scholar 

  10. HERMES collaboration, A. Airapetian et al., Exclusive leptoproduction of real photons on a longitudinally polarised hydrogen target, JHEP 06 (2010) 019 [arXiv:1004.0177] [INSPIRE].

    ADS  Google Scholar 

  11. HERMES collaboration, A. Airapetian et al., Measurement of double-spin asymmetries associated with deeply virtual Compton scattering on a transversely polarized hydrogen target, Phys. Lett. B 704 (2011) 15 [arXiv:1106.2990] [INSPIRE].

    ADS  Google Scholar 

  12. HERMES collaboration, A. Airapetian et al., Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction, JHEP 10 (2012) 042 [arXiv:1206.5683] [INSPIRE].

    ADS  Google Scholar 

  13. HERMES collaboration, A. Airapetian et al., Beam-helicity and beam-charge asymmetries associated with deeply virtual Compton scattering on the unpolarised proton, JHEP 07 (2012) 032 [arXiv:1203.6287] [INSPIRE].

    ADS  Google Scholar 

  14. CLAS collaboration, S. Chen et al., Measurement of deeply virtual Compton scattering with a polarized proton target, Phys. Rev. Lett. 97 (2006) 072002 [hep-ex/0605012] [INSPIRE].

    ADS  Google Scholar 

  15. CLAS collaboration, F. Girod et al., Measurement of deeply virtual Compton scattering beam-spin asymmetries, Phys. Rev. Lett. 100 (2008) 162002 [arXiv:0711.4805] [INSPIRE].

    ADS  Google Scholar 

  16. CLAS collaboration, G. Gavalian et al., Beam spin asymmetries in DVCS with CLAS at 4.8 GeV, Phys. Rev. C 80 (2009) 035206 [arXiv:0812.2950] [INSPIRE].

    ADS  Google Scholar 

  17. Jefferson Lab Hall A and Hall A DVCS collaborations, C.M. Camacho et al., Scaling tests of the cross-section for deeply virtual Compton scattering, Phys. Rev. Lett. 97 (2006) 262002 [nucl-ex/0607029] [INSPIRE].

    ADS  Google Scholar 

  18. Jefferson Lab Hall A collaboration, M. Mazouz et al., Deeply virtual Compton scattering off the neutron, Phys. Rev. Lett. 99 (2007) 242501 [arXiv:0709.0450] [INSPIRE].

    ADS  Google Scholar 

  19. H1 collaboration, S. Aid et al., Elastic electroproduction of ρ 0 and J/ψ mesons at large Q 2 at HERA, Nucl. Phys. B 468 (1996) 3 [hep-ex/9602007] [INSPIRE].

    ADS  Google Scholar 

  20. ZEUS collaboration, J. Breitweg et al., Exclusive electroproduction of ρ 0 and J/ψ mesons at HERA, Eur. Phys. J. C 6 (1999) 603 [hep-ex/9808020] [INSPIRE].

    ADS  Google Scholar 

  21. H1 collaboration, C. Adloff et al., Elastic electroproduction of ρ mesons at HERA, Eur. Phys. J. C 13 (2000) 371 [hep-ex/9902019] [INSPIRE].

    ADS  Google Scholar 

  22. ZEUS Collaborations collaboration, J. Breitweg et al., Measurement of the spin density matrix elements in exclusive electroproduction of ρ 0 mesons at HERA, Eur. Phys. J. C 12 (2000) 393 [hep-ex/9908026] [INSPIRE].

    ADS  Google Scholar 

  23. H1 collaboration, C. Adloff et al., A measurement of the t dependence of the helicity structure of diffractive ρ meson electroproduction at HERA, Phys. Lett. B 539 (2002) 25 [hep-ex/0203022] [INSPIRE].

    ADS  Google Scholar 

  24. H1 collaboration, F. Aaron et al., Diffractive electroproduction of ρ and ϕ mesons at HERA, JHEP 05 (2010) 032 [arXiv:0910.5831] [INSPIRE].

    ADS  Google Scholar 

  25. ZEUS collaboration, S. Chekanov et al., Exclusive ρ 0 production in deep inelastic scattering at HERA, PMC Phys. A 1 (2007) 6 [arXiv:0708.1478] [INSPIRE].

    ADS  Google Scholar 

  26. HERMES collaboration, A. Airapetian et al., Exclusive leptoproduction of ρ 0 mesons from hydrogen at intermediate virtual photon energies, Eur. Phys. J. C 17 (2000) 389 [hep-ex/0004023] [INSPIRE].

    ADS  Google Scholar 

  27. HERMES collaboration, A. Airapetian et al., Ratios of helicity amplitudes for exclusive ρ 0 electroproduction, Eur. Phys. J. C 71 (2011) 1609 [arXiv:1012.3676] [INSPIRE].

    ADS  Google Scholar 

  28. CLAS collaboration, C. Hadjidakis et al., Exclusive ρ 0 meson electroproduction from hydrogen at CLAS, Phys. Lett. B 605 (2005) 256 [hep-ex/0408005] [INSPIRE].

    ADS  Google Scholar 

  29. CLAS collaboration, S. Morrow et al., Exclusive ρ 0 electroproduction on the proton at CLAS, Eur. Phys. J. A 39 (2009) 5 [arXiv:0807.3834] [INSPIRE].

    ADS  Google Scholar 

  30. ZEUS collaboration, M. Derrick et al., Measurement of the reaction γ pϕp in deep inelastic e + p scattering at HERA, Phys. Lett. B 380 (1996) 220 [hep-ex/9604008] [INSPIRE].

    ADS  Google Scholar 

  31. H1 collaboration, C. Adloff et al., Proton dissociative ρ and elastic ϕ electroproduction at HERA, Z. Phys. C 75 (1997) 607 [hep-ex/9705014] [INSPIRE].

    Google Scholar 

  32. H1 collaboration, C. Adloff et al., Measurement of elastic electroproduction of ϕ mesons at HERA, Phys. Lett. B 483 (2000) 360 [hep-ex/0005010] [INSPIRE].

    ADS  Google Scholar 

  33. ZEUS collaboration, S. Chekanov et al., Exclusive electroproduction of ϕ mesons at HERA, Nucl. Phys. B 718 (2005) 3 [hep-ex/0504010] [INSPIRE].

    ADS  Google Scholar 

  34. HERMES collaboration, A. Borissov, Diffraction and deeply virtual exclusive scattering at HERMES, Nucl. Phys. Proc. Suppl. B 99 (2001) 156 [INSPIRE].

    ADS  Google Scholar 

  35. CLAS collaboration, J. Santoro et al., Electroproduction of ϕ(1020) mesons at 1.4 < Q 2 < 3.8 GeV2 measured with the CLAS spectrometer, Phys. Rev. C 78 (2008) 025210 [arXiv:0803.3537] [INSPIRE].

    ADS  Google Scholar 

  36. ZEUS collaboration, J. Breitweg et al., Measurement of exclusive ω electroproduction at HERA, Phys. Lett. B 487 (2000) 273 [hep-ex/0006013] [INSPIRE].

    ADS  Google Scholar 

  37. CLAS Collaboration, L. Morand et al., Deeply virtual and exclusive electroproduction of ω mesons, Eur. Phys. J. A 24 (2005) 445 [hep-ex/0504057] [INSPIRE].

    ADS  Google Scholar 

  38. H1 collaboration, C. Adloff et al., Charmonium production in deep inelastic scattering at HERA, Eur. Phys. J. C 10 (1999) 373 [hep-ex/9903008] [INSPIRE].

    ADS  Google Scholar 

  39. ZEUS collaboration, S. Chekanov et al., Exclusive electroproduction of J/ψ mesons at HERA, Nucl. Phys. B 695 (2004) 3 [hep-ex/0404008] [INSPIRE].

    ADS  Google Scholar 

  40. H1 collaboration, A. Aktas et al., Elastic J/ψ production at HERA, Eur. Phys. J. C 46 (2006) 585 [hep-ex/0510016] [INSPIRE].

    ADS  Google Scholar 

  41. H1 collaboration, C. Adloff et al., Elastic photoproduction of J/ψ and Υ mesons at HERA, Phys. Lett. B 483 (2000) 23 [hep-ex/0003020] [INSPIRE].

    Google Scholar 

  42. ZEUS collaboration, S. Chekanov et al., Exclusive photoproduction of Υ mesons at HERA, Phys. Lett. B 680 (2009) 4 [arXiv:0903.4205] [INSPIRE].

    ADS  Google Scholar 

  43. ZEUS collaboration, H. Abramowicz et al., Measurement of the t dependence in exclusive photoproduction of Υ(1S) mesons at HERA, Phys. Lett. B 708 (2012) 14 [arXiv:1111.2133] [INSPIRE].

    ADS  Google Scholar 

  44. HERMES collaboration, A. Airapetian et al., Cross-sections for hard exclusive electroproduction of π + mesons on a hydrogen target, Phys. Lett. B 659 (2008) 486 [arXiv:0707.0222] [INSPIRE].

    ADS  Google Scholar 

  45. T. Horn et al., Scaling study of the pion electroproduction cross sections and the pion form factor, Phys. Rev. C 78 (2008) 058201 [arXiv:0707.1794] [INSPIRE].

    ADS  Google Scholar 

  46. Jefferson Lab collaboration, H. Blok et al., Charged pion form factor between Q 2 = 0.60 and 2.45 GeV2 . I. Measurements of the cross section for the 1 H(e, eπ + )n reaction, Phys. Rev. C 78 (2008) 045202 [arXiv:0809.3161] [INSPIRE].

    ADS  Google Scholar 

  47. A. Donnachie and P. Landshoff, pp and pp elastic scattering, Nucl. Phys. B 231 (1984) 189 [INSPIRE].

    ADS  Google Scholar 

  48. J.P. Ralston and B. Pire, Femtophotography of protons to nuclei with deeply virtual Compton scattering, Phys. Rev. D 66 (2002) 111501 [hep-ph/0110075] [INSPIRE].

    ADS  Google Scholar 

  49. A. Donnachie and P. Landshoff, Small x: two pomerons!, Phys. Lett. B 437 (1998) 408 [hep-ph/9806344] [INSPIRE].

    ADS  Google Scholar 

  50. I. Balitsky and L. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

  51. E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  52. A.H. Müller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].

    ADS  Google Scholar 

  53. A.H. Müller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].

    Google Scholar 

  54. L.D. McLerran and R. Venugopalan, Greens functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].

    ADS  Google Scholar 

  55. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

    ADS  Google Scholar 

  56. D. Müller, D. Robaschik, B. Geyer, F. Dittes and J. Hořejši, Wave functions, evolution equations and evolution kernels from light ray operators of QCD, Fortsch. Phys. 42 (1994) 101 [hep-ph/9812448] [INSPIRE].

    ADS  Google Scholar 

  57. A. Radyushkin, Scaling limit of deeply virtual Compton scattering, Phys. Lett. B 380 (1996) 417 [hep-ph/9604317] [INSPIRE].

    ADS  Google Scholar 

  58. X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D 55 (1997) 7114 [hep-ph/9609381] [INSPIRE].

    ADS  Google Scholar 

  59. A. Radyushkin, Nonforward parton densities and soft mechanism for form-factors and wide angle Compton scattering in QCD, Phys. Rev. D 58 (1998) 114008 [hep-ph/9803316] [INSPIRE].

    ADS  Google Scholar 

  60. M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Linking parton distributions to form-factors and Compton scattering, Eur. Phys. J. C 8 (1999) 409 [hep-ph/9811253] [INSPIRE].

    ADS  Google Scholar 

  61. S. Goloskokov and P. Kroll, Vector meson electroproduction at small Bjorken-x and generalized parton distributions, Eur. Phys. J. C 42 (2005) 281 [hep-ph/0501242] [INSPIRE].

    ADS  Google Scholar 

  62. J.C. Collins, L. Frankfurt and M. Strikman, Factorization for hard exclusive electroproduction of mesons in QCD, Phys. Rev. D 56 (1997) 2982 [hep-ph/9611433] [INSPIRE].

    ADS  Google Scholar 

  63. J.C. Collins and A. Freund, Proof of factorization for deeply virtual Compton scattering in QCD, Phys. Rev. D 59 (1999) 074009 [hep-ph/9801262] [INSPIRE].

    ADS  Google Scholar 

  64. M. Diehl, T. Feldmann, R. Jakob and P. Kroll, The overlap representation of skewed quark and gluon distributions, Nucl. Phys. B 596 (2001) 33 [Erratum ibid. B 605 (2001) 647] [hep-ph/0009255] [INSPIRE].

  65. S.J. Brodsky, M. Diehl and D.S. Hwang, Light cone wave function representation of deeply virtual Compton scattering, Nucl. Phys. B 596 (2001) 99 [hep-ph/0009254] [INSPIRE].

    ADS  Google Scholar 

  66. M. Diehl, Generalized parton distributions, Phys. Rept. 388 (2003) 41 [hep-ph/0307382] [INSPIRE].

    ADS  Google Scholar 

  67. A. Belitsky and A. Radyushkin, Unraveling hadron structure with generalized parton distributions, Phys. Rept. 418 (2005) 1 [hep-ph/0504030] [INSPIRE].

    ADS  Google Scholar 

  68. M. Burkardt, Impact parameter dependent parton distributions and off-forward parton distributions for ζ → 0, Phys. Rev. D 62 (2000) 071503 [Erratum ibid. D 66 (2002) 119903] [hep-ph/0005108] [INSPIRE].

  69. M. Diehl, Generalized parton distributions in impact parameter space, Eur. Phys. J. C 25 (2002) 223 [Erratum ibid. C 31 (2003) 277] [hep-ph/0205208] [INSPIRE].

  70. J.B. Kogut and D.E. Soper, Quantum electrodynamics in the infinite momentum frame, Phys. Rev. D 1 (1970) 2901 [INSPIRE].

    ADS  Google Scholar 

  71. X.-D. Ji, Gauge invariant decomposition of nucleon spin and its spin-off, Phys. Rev. Lett. 78 (1997) 610 [hep-ph/9603249] [INSPIRE].

    ADS  Google Scholar 

  72. A.V. Belitsky, D. Müller and A. Kirchner, Theory of deeply virtual Compton scattering on the nucleon, Nucl. Phys. B 629 (2002) 323 [hep-ph/0112108] [INSPIRE].

    ADS  Google Scholar 

  73. A. Accardi et al., Electron Ion Collider: the next QCD frontierunderstanding the glue that binds us all, arXiv:1212.1701 [INSPIRE].

  74. A. Belitsky and D. Müller, Exclusive electroproduction revisited: treating kinematical effects, Phys. Rev. D 82 (2010) 074010 [arXiv:1005.5209] [INSPIRE].

    ADS  Google Scholar 

  75. A.V. Belitsky, D. Müller and Y. Ji, Compton scattering: from deeply virtual to quasi-real, arXiv:1212.6674 [INSPIRE].

  76. L. Hand, Experimental investigation of pion electroproduction, Phys. Rev. 129 (1963) 1834 [INSPIRE].

    ADS  Google Scholar 

  77. X.-D. Ji, Off-forward parton distributions, J. Phys. G 24 (1998) 1181 [hep-ph/9807358] [INSPIRE].

    ADS  Google Scholar 

  78. A. Radyushkin, Nonforward parton distributions, Phys. Rev. D 56 (1997) 5524 [hep-ph/9704207] [INSPIRE].

    ADS  Google Scholar 

  79. A.D. Martin and M. Ryskin, The effect of off diagonal parton distributions in diffractive vector meson electroproduction, Phys. Rev. D 57 (1998) 6692 [hep-ph/9711371] [INSPIRE].

    ADS  Google Scholar 

  80. B. Pire, J. Soffer and O. Teryaev, Positivity constraints for off-forward parton distributions, Eur. Phys. J. C 8 (1999) 103 [hep-ph/9804284] [INSPIRE].

    ADS  Google Scholar 

  81. A. Radyushkin, Double distributions and evolution equations, Phys. Rev. D 59 (1999) 014030 [hep-ph/9805342] [INSPIRE].

    ADS  Google Scholar 

  82. X.-D. Ji, Off-forward parton distributions, J. Phys. G 24 (1998) 1181 [hep-ph/9807358] [INSPIRE].

    ADS  Google Scholar 

  83. P. Pobylitsa, Positivity bounds on generalized parton distributions in impact parameter representation, Phys. Rev. D 66 (2002) 094002 [hep-ph/0204337] [INSPIRE].

    ADS  Google Scholar 

  84. P. Pobylitsa, Integral representations for nonperturbative GPDs in terms of perturbative diagrams, Phys. Rev. D 67 (2003) 094012 [hep-ph/0210238] [INSPIRE].

    ADS  Google Scholar 

  85. P. Pobylitsa, Solution of polynomiality and positivity constraints on generalized parton distributions, Phys. Rev. D 67 (2003) 034009 [hep-ph/0210150] [INSPIRE].

    ADS  Google Scholar 

  86. X.-D. Ji and J. Osborne, One loop corrections and all order factorization in deeply virtual Compton scattering, Phys. Rev. D 58 (1998) 094018 [hep-ph/9801260] [INSPIRE].

    ADS  Google Scholar 

  87. A.V. Belitsky and D. Müller, Predictions from conformal algebra for the deeply virtual Compton scattering, Phys. Lett. B 417 (1998) 129 [hep-ph/9709379] [INSPIRE].

    ADS  Google Scholar 

  88. L. Mankiewicz, G. Piller, E. Stein, M. Vänttinen and T. Weigl, NLO corrections to deeply virtual Compton scattering, Phys. Lett. B 425 (1998) 186 [hep-ph/9712251] [INSPIRE].

    ADS  Google Scholar 

  89. X.-D. Ji and J. Osborne, One loop QCD corrections to deeply virtual Compton scattering: the parton helicity independent case, Phys. Rev. D 57 (1998) 1337 [hep-ph/9707254] [INSPIRE].

    ADS  Google Scholar 

  90. A.V. Belitsky, A. Freund and D. Müller, Evolution kernels of skewed parton distributions: method and two loop results, Nucl. Phys. B 574 (2000) 347 [hep-ph/9912379] [INSPIRE].

    ADS  Google Scholar 

  91. B. Pire, L. Szymanowski and J. Wagner, NLO corrections to timelike, spacelike and double deeply virtual Compton scattering, Phys. Rev. D 83 (2011) 034009 [arXiv:1101.0555] [INSPIRE].

    ADS  Google Scholar 

  92. D. Müller, Next-to-next-to leading order corrections to deeply virtual Compton scattering: the non-singlet case, Phys. Lett. B 634 (2006) 227 [hep-ph/0510109] [INSPIRE].

    ADS  Google Scholar 

  93. K. Kumerički, D. Müller, K. Passek-Kumerički and A. Schäfer, Deeply virtual Compton scattering beyond next-to-leading order: the flavor singlet case, Phys. Lett. B 648 (2007) 186 [hep-ph/0605237] [INSPIRE].

    ADS  Google Scholar 

  94. V. Braun and A. Manashov, Kinematic power corrections in off-forward hard reactions, Phys. Rev. Lett. 107 (2011) 202001 [arXiv:1108.2394] [INSPIRE].

    ADS  Google Scholar 

  95. V. Braun and A. Manashov, Operator product expansion in QCD in off-forward kinematics: separation of kinematic and dynamical contributions, JHEP 01 (2012) 085 [arXiv:1111.6765] [INSPIRE].

    ADS  Google Scholar 

  96. V. Braun, A. Manashov and B. Pirnay, Finite-t and target mass corrections to DVCS on a scalar target, Phys. Rev. D 86 (2012) 014003 [arXiv:1205.3332] [INSPIRE].

    ADS  Google Scholar 

  97. V. Braun, A. Manashov and B. Pirnay, Finite-t and target mass corrections to deeply virtual Compton scattering, Phys. Rev. Lett. 109 (2012) 242001 [arXiv:1209.2559] [INSPIRE].

    ADS  Google Scholar 

  98. A.V. Belitsky and D. Müller, Off-forward gluonometry, Phys. Lett. B 486 (2000) 369 [hep-ph/0005028] [INSPIRE].

  99. N. Kivel and L. Mankiewicz, Twist four photon helicity flip amplitude in DVCS on a nucleon in the Wandzura-Wilczek approximation, Eur. Phys. J. C 21 (2001) 621 [hep-ph/0106329] [INSPIRE].

    ADS  Google Scholar 

  100. O. Teryaev, Analytic properties of hard exclusive amplitudes, hep-ph/0510031 [INSPIRE].

  101. M.V. Polyakov and C. Weiss, Skewed and double distributions in pion and nucleon, Phys. Rev. D 60 (1999) 114017 [hep-ph/9902451] [INSPIRE].

    ADS  Google Scholar 

  102. L. Mankiewicz, G. Piller and A. Radyushkin, Hard exclusive electroproduction of pions, Eur. Phys. J. C 10 (1999) 307 [hep-ph/9812467] [INSPIRE].

    ADS  Google Scholar 

  103. L. Frankfurt, M.V. Polyakov, M. Strikman and M. Vanderhaeghen, Hard exclusive electroproduction of decuplet baryons in the large-N c limit, Phys. Rev. Lett. 84 (2000) 2589 [hep-ph/9911381] [INSPIRE].

    ADS  Google Scholar 

  104. C. Bechler and D. Müller, Generic modelling of non-perturbative quantities and a description of hard exclusive π + electroproduction, arXiv:0906.2571 [INSPIRE].

  105. M.V. Polyakov and M. Vanderhaeghen, Taming deeply virtual Compton scattering, arXiv:0803.1271 [INSPIRE].

  106. P. Kroll, H. Moutarde and F. Sabatie, From hard exclusive meson electroproduction to deeply virtual Compton scattering, Eur. Phys. J. C 73 (2013) 2278 [arXiv:1210.6975] [INSPIRE].

    ADS  Google Scholar 

  107. L. Frankfurt, A. Freund and M. Strikman, Diffractive exclusive photoproduction in DIS at HERA, Phys. Rev. D 58 (1998) 114001 [Erratum ibid. D 59 (1999) 119901] [hep-ph/9710356] [INSPIRE].

  108. K. Goeke, M.V. Polyakov and M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons, Prog. Part. Nucl. Phys. 47 (2001) 401 [hep-ph/0106012] [INSPIRE].

    ADS  Google Scholar 

  109. V. Guzey and T. Teckentrup, The dual parameterization of the proton generalized parton distribution functions H and E and description of the DVCS cross sections and asymmetries, Phys. Rev. D 74 (2006) 054027 [hep-ph/0607099] [INSPIRE].

    ADS  Google Scholar 

  110. S. Goloskokov and P. Kroll, The role of the quark and gluon GPDs in hard vector-meson electroproduction, Eur. Phys. J. C 53 (2008) 367 [arXiv:0708.3569] [INSPIRE].

    ADS  Google Scholar 

  111. S. Goloskokov and P. Kroll, An attempt to understand exclusive π + electroproduction, Eur. Phys. J. C 65 (2010) 137 [arXiv:0906.0460] [INSPIRE].

    ADS  Google Scholar 

  112. A. Freund and M. McDermott, A detailed next-to-leading order QCD analysis of deeply virtual Compton scattering observables, Eur. Phys. J. C 23 (2002) 651 [hep-ph/0111472] [INSPIRE].

    ADS  Google Scholar 

  113. V. Guzey and T. Teckentrup, On the mistake in the implementation of the minimal model of the dual parameterization and resulting inability to describe the high-energy DVCS data, Phys. Rev. D 79 (2009) 017501 [arXiv:0810.3899] [INSPIRE].

    ADS  Google Scholar 

  114. K. Kumerički and D. Müller, Deeply virtual Compton scattering at small x B and the access to the GPD H, Nucl. Phys. B 841 (2010) 1 [arXiv:0904.0458] [INSPIRE].

    ADS  Google Scholar 

  115. M. Guidal, A fitter code for deep virtual Compton scattering and generalized parton distributions, Eur. Phys. J. A 37 (2008) 319 [Erratum ibid. A 40 (2009) 119] [arXiv:0807.2355] [INSPIRE].

    Google Scholar 

  116. M. Guidal and H. Moutarde, Generalized parton distributions from deeply virtual Compton scattering at HERMES, Eur. Phys. J. A 42 (2009) 71 [arXiv:0905.1220] [INSPIRE].

    ADS  Google Scholar 

  117. M. Guidal, Generalized parton distributions from deep virtual Compton scattering at CLAS, Phys. Lett. B 689 (2010) 156 [arXiv:1003.0307] [INSPIRE].

    ADS  Google Scholar 

  118. M. Guidal, Constraints on the \( \widetilde{H} \) generalized parton distribution from deep virtual Compton scattering measured at HERMES, Phys. Lett. B 693 (2010) 17 [arXiv:1005.4922] [INSPIRE].

    ADS  Google Scholar 

  119. K. Kumerički, D. Müller and A. Schäfer, Neural network generated parametrizations of deeply virtual Compton form factors, JHEP 07 (2011) 073 [arXiv:1106.2808] [INSPIRE].

    ADS  Google Scholar 

  120. K. Kumerički, D. Müller and M. Murray, HERMES impact for the access of Compton form factors, arXiv:1301.1230 [INSPIRE].

  121. K. Kumerički, D. Müller and K. Passek-Kumerički, Sum rules and dualities for generalized parton distributions: is there a holographic principle?, Eur. Phys. J. C 58 (2008) 193 [arXiv:0805.0152] [INSPIRE].

    ADS  Google Scholar 

  122. A.V. Belitsky and D. Müller, Twist-three effects in two photon processes, Nucl. Phys. B 589 (2000) 611 [hep-ph/0007031] [INSPIRE].

    ADS  Google Scholar 

  123. K. Kumerički et al., Accessing GPDs from experimentpotential of a high-luminosity EIC, arXiv:1105.0899 [INSPIRE].

  124. K. Kumerički and D. Müller, GPD webpage, http://calculon.phy.hr/gpd/.

  125. S. Goloskokov and P. Kroll, The target asymmetry in hard vector-meson electroproduction and parton angular momenta, Eur. Phys. J. C 59 (2009) 809 [arXiv:0809.4126] [INSPIRE].

    ADS  Google Scholar 

  126. S. Goloskokov and P. Kroll, Transversity in hard exclusive electroproduction of pseudoscalar mesons, Eur. Phys. J. A 47 (2011) 112 [arXiv:1106.4897] [INSPIRE].

    ADS  Google Scholar 

  127. M. Meskauskas and D. Müller, A fresh look at exclusive electroproduction of light vector mesons, arXiv:1112.2597 [INSPIRE].

  128. H. Moutarde, Extraction of the Compton form factor H from DVCS measurements at Jefferson lab, Phys. Rev. D 79 (2009) 094021 [arXiv:0904.1648] [INSPIRE].

    ADS  Google Scholar 

  129. D. Boer et al., Gluons and the quark sea at high energies: distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].

  130. E. Perez, L. Schoeffel and L. Favart, MILOU: a Monte-Carlo for deeply virtual Compton scattering, hep-ph/0411389 [INSPIRE].

  131. A. Freund, M. McDermott and M. Strikman, Modeling generalized parton distributions to describe deeply virtual Compton scattering data, Phys. Rev. D 67 (2003) 036001 [hep-ph/0208160] [INSPIRE].

    ADS  Google Scholar 

  132. A. Freund, A detailed QCD analysis of twist 3 effects in DVCS observables, Phys. Rev. D 68 (2003) 096006 [hep-ph/0306012] [INSPIRE].

    ADS  Google Scholar 

  133. M. Diehl and D.Y. Ivanov, Dispersion representations for hard exclusive processes: beyond the Born approximation, Eur. Phys. J. C 52 (2007) 919 [arXiv:0707.0351] [INSPIRE].

    ADS  Google Scholar 

  134. A. Donnachie, Evidence for quark spin-flip in Pomeron exchange, Phys. Lett. B 611 (2005) 255 [hep-ph/0412085] [INSPIRE].

    ADS  Google Scholar 

  135. K. Kumerički, D. Müller and K. Passek-Kumerički, Fitting DVCS at NLO and beyond, arXiv:0710.5649 [INSPIRE].

  136. D. Müller, Uses of Q 2 evolution in GPD phenomenology, Int. J. Mod. Phys. Conf. Ser. 04 (2011) 168 [INSPIRE].

    Google Scholar 

  137. M. Penttinen, M.V. Polyakov and K. Goeke, Helicity skewed quark distributions of the nucleon and chiral symmetry, Phys. Rev. D 62 (2000) 014024 [hep-ph/9909489] [INSPIRE].

    ADS  Google Scholar 

  138. S. Alekhin, Parton distributions from deep inelastic scattering data, Phys. Rev. D 68 (2003) 014002 [hep-ph/0211096] [INSPIRE].

    ADS  Google Scholar 

  139. T. Gehrmann and W.J. Stirling, Polarized parton distributions in the nucleon, Phys. Rev. D 53 (1996) 6100 [hep-ph/9512406] [INSPIRE].

    ADS  Google Scholar 

  140. A.V. Belitsky, D. Müller, A. Kirchner and A. Schäfer, Twist three analysis of photon electroproduction off pion, Phys. Rev. D 64 (2001) 116002 [hep-ph/0011314] [INSPIRE].

    ADS  Google Scholar 

  141. E.R. Berger, F. Cano, M. Diehl and B. Pire, Generalized parton distributions in the deuteron, Phys. Rev. Lett. 87 (2001) 142302 [hep-ph/0106192] [INSPIRE].

    ADS  Google Scholar 

  142. A. Kirchner and D. Müller, Deeply virtual Compton scattering off nuclei, Eur. Phys. J. C 32 (2003) 347 [hep-ph/0302007] [INSPIRE].

    ADS  Google Scholar 

  143. F. Cano and B. Pire, Deep electroproduction of photons and mesons on the deuteron, Eur. Phys. J. A 19 (2004) 423 [hep-ph/0307231] [INSPIRE].

    ADS  Google Scholar 

  144. D.Y. Ivanov, L. Szymanowski and G. Krasnikov, Vector meson electroproduction at next-to-leading order, JETP Lett. 80 (2004) 226 [Pisma Zh. Eksp. Teor. Fiz. 80 (2004) 255] [hep-ph/0407207] [INSPIRE].

  145. E.R. Berger, M. Diehl and B. Pire, Time-like Compton scattering: exclusive photoproduction of lepton pairs, Eur. Phys. J. C 23 (2002) 675 [hep-ph/0110062] [INSPIRE].

    ADS  Google Scholar 

  146. H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski and J. Wagner, On timelike and spacelike deeply virtual Compton scattering at next to leading order, Phys. Rev. D 87 (2013) 054029 [arXiv:1301.3819] [INSPIRE].

    ADS  Google Scholar 

  147. M. Guidal and M. Vanderhaeghen, Double deeply virtual Compton scattering off the nucleon, Phys. Rev. Lett. 90 (2003) 012001 [hep-ph/0208275] [INSPIRE].

    ADS  Google Scholar 

  148. A.V. Belitsky and D. Müller, Exclusive electroproduction of lepton pairs as a probe of nucleon structure, Phys. Rev. Lett. 90 (2003) 022001 [hep-ph/0210313] [INSPIRE].

    ADS  Google Scholar 

  149. A.V. Belitsky and D. Müller, Probing generalized parton distributions with electroproduction of lepton pairs off the nucleon, Phys. Rev. D 68 (2003) 116005 [hep-ph/0307369] [INSPIRE].

    ADS  Google Scholar 

  150. M. Diehl, How large can the distributions e q and e g be?, in Gluons and the quark sea at high energies: distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].

  151. S. Fazio, R. Fiore, L. Jenkovszky and A. Lavorini, Exclusive diffractive production of real photons and vector mesons in a factorized Regge-pole model with non-linear Pomeron trajectory, Phys. Rev. D 85 (2012) 054009 [arXiv:1109.6374] [INSPIRE].

    ADS  Google Scholar 

  152. D. Müller, Pomeron dominance in deeply virtual Compton scattering and the femto holographic image of the proton, hep-ph/0605013 [INSPIRE].

  153. E.-C. Aschenauer, M. Diehl and S. Fazio, From transverse-momentum spectra to transverse images, in Gluons and the quark sea at high energies: distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].

  154. R. Jaffe and A. Manohar, The g 1 problem: fact and fantasy on the spin of the proton, Nucl. Phys. B 337 (1990) 509 [INSPIRE].

    ADS  Google Scholar 

  155. P. Hagler, Hadron structure from lattice quantum chromodynamics, Phys. Rept. 490 (2010) 49 [arXiv:0912.5483] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  156. L. Frankfurt, A. Freund and M. Strikman, Deeply virtual Compton scattering at HERA: a probe of asymptotia, Phys. Lett. B 460 (1999) 417 [hep-ph/9806535] [INSPIRE].

    ADS  Google Scholar 

  157. H. Abramowicz and A. Levy, The ALLM parameterization of σ tot(γ p): an update, hep-ph/9712415 [INSPIRE].

  158. P.R.B. Saull, A Monte Carlo generator for deeply virtual Compton scattering at HERA, available on-line at http://www-zeus.desy.de/physics/diff/pub/MC, (1999).

  159. PAWPhysics Analysis Workstation, available on-line at http://paw.web.cern.ch/paw/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.C. Aschenauer.

Additional information

ArXiv ePrint: 1304.0077

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschenauer, E., Fazio, S., Kumerički, K. et al. Deeply virtual Compton scattering at a proposed high-luminosity Electron-Ion Collider. J. High Energ. Phys. 2013, 93 (2013). https://doi.org/10.1007/JHEP09(2013)093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)093

Keywords

Navigation