Skip to main content
Log in

Thermal radiation and inclusive production in the running coupling \(k_T\)-factorization approach

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The characteristics of the thermal radiation are investigated using a two-component model, with the hard component being described by the Color Glass Condensate formalism. The inclusive transverse momentum spectra of charged hadrons produced in proton–proton and proton–nucleus collisions at LHC energies and large - \(p_T\) are estimated using the running coupling \(k_T\)-factorization formula and the solution of the Balitsky–Kovchegov equation. Our results indicate that the thermal term is necessary to describe the experimental data and that the effective thermal temperature has an energy dependence similar to the saturation scale. We demonstrate that the enhancement of the thermal temperature in pPb collisions is consistent with that predicted by the saturation scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The analysis uses publicly available data for the inclusive transverse momentum spectrum measured by the different collaborations at the LHC, which are duly referenced in the text.]

Notes

  1. The notation follows the one from ref. [24]: \({\varvec{k}}\) denotes the transverse momentum of the produced gluon while \({\varvec{q}}\) and \({\varvec{k}}-{\varvec{q}}\) are the “intrinsic” transverse momenta from the gluon distributions.

References

  1. E. Iancu, R. Venugopalan, In *Hwa, R.C. (ed.) et al.: Quark gluon plasma* 249-3363, [hep-ph/0303204]

  2. H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

    Article  ADS  Google Scholar 

  4. I.I. Balitsky, Nucl. Phys. B 463, 99 (1996)

    Article  ADS  Google Scholar 

  5. I.I. Balitsky, Phys. Rev. Lett. 81, 2024 (1998)

    Article  ADS  Google Scholar 

  6. I.I. Balitsky, Phys. Rev. D 60, 014020 (1999)

    Article  ADS  Google Scholar 

  7. I.I. Balitsky, Phys. Lett. B 518, 235 (2001)

    Article  ADS  Google Scholar 

  8. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999)

    Article  ADS  Google Scholar 

  9. Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000)

    Article  ADS  Google Scholar 

  10. J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert, Phys. Rev. D 55, 5414 (1997)

    Article  ADS  Google Scholar 

  11. J. Jalilian-Marian, A. Kovner, H. Weigert, Phys. Rev. D 59, 014014 (1999)

    Article  ADS  Google Scholar 

  12. J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert, Phys. Rev. D 59, 014015 (1999)

    Article  ADS  Google Scholar 

  13. J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert, Phys. Rev. D 59, 034007 (1999)

    Article  ADS  Google Scholar 

  14. E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 692, 583 (2001)

    Article  ADS  Google Scholar 

  15. E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 701, 489 (2002)

    Article  ADS  Google Scholar 

  16. H. Weigert, Nucl. Phys. A 703, 823 (2002)

    Article  ADS  Google Scholar 

  17. A.A. Bylinkin, D.E. Kharzeev, A.A. Rostovtsev, Int. J. Mod. Phys. E 23(12), 1450083 (2014)

    Article  ADS  Google Scholar 

  18. O.K. Baker, D.E. Kharzeev, Phys. Rev. D 98(5), 054007 (2018)

    Article  ADS  Google Scholar 

  19. X. Feal, C. Pajares, R.A. Vazquez, Phys. Rev. C 99(1), 015205 (2019)

    Article  ADS  Google Scholar 

  20. P. F. Kolb, U. W. Heinz, [arXiv:nucl-th/0305084] [nucl-th]

  21. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316–334 (2005)

    Article  ADS  Google Scholar 

  22. E. Gotsman, E. Levin, Eur. Phys. J. C 79(5), 415 (2019)

    Article  ADS  Google Scholar 

  23. E. Gotsman, E. Levin, Phys. Rev. D 100(3), 034013 (2019)

    Article  ADS  Google Scholar 

  24. W.A. Horowitz, Y.V. Kovchegov, Nucl. Phys. A 849, 72 (2011)

    Article  ADS  Google Scholar 

  25. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994)

    Article  ADS  Google Scholar 

  26. L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 3352 (1994)

    Article  ADS  Google Scholar 

  27. L.D. McLerran, R. Venugopalan, Phys. Rev. D 50, 2225 (1994)

    Article  ADS  Google Scholar 

  28. A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D 52, 6231 (1995)

    Article  ADS  Google Scholar 

  29. A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D 52, 3809 (1995)

    Article  ADS  Google Scholar 

  30. Y.V. Kovchegov, K. Tuchin, Phys. Rev. D 65, 074026 (2002)

    Article  ADS  Google Scholar 

  31. A. Dumitru, L.D. McLerran, Nucl. Phys. A 700, 492 (2002)

    Article  ADS  Google Scholar 

  32. J.P. Blaizot, F. Gelis, R. Venugopalan, Nucl. Phys. A 743, 13 (2004)

    Article  ADS  Google Scholar 

  33. F. Duraes, A. Giannini, V.P. Goncalves, F. Navarra, Phys. Rev. D 94(5), 054023 (2016)

    Article  ADS  Google Scholar 

  34. A. Dumitru, A.V. Giannini, M. Luzum, Y. Nara, Phys. Lett. B 784, 417 (2018)

    Article  ADS  Google Scholar 

  35. E. Levin, A.H. Rezaeian, Phys. Rev. D 82, 014022 (2010)

    Article  ADS  Google Scholar 

  36. E. Levin, A.H. Rezaeian, Phys. Rev. D 82, 054003 (2010)

    Article  ADS  Google Scholar 

  37. E. Levin, A.H. Rezaeian, Phys. Rev. D 83, 114001 (2011)

    Article  ADS  Google Scholar 

  38. A. Dumitru, D.E. Kharzeev, E.M. Levin, Y. Nara, Phys. Rev. C 85, 044920 (2012)

    Article  ADS  Google Scholar 

  39. J.L. Albacete, A. Dumitru, H. Fujii, Y. Nara, Nucl. Phys. A 897, 1 (2013)

    Article  ADS  Google Scholar 

  40. Y. Kovchegov, H. Weigert, Nucl. Phys. A 784, 188 (2007)

    Article  ADS  Google Scholar 

  41. I.I. Balitsky, Phys. Rev. D 75, 014001 (2007)

    Article  ADS  Google Scholar 

  42. E. Gardi, J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 784, 282 (2007)

    Article  ADS  Google Scholar 

  43. I. Balitsky, G.A. Chirilli, Phys. Rev. D 77, 014019 (2008)

    Article  ADS  Google Scholar 

  44. A. Dumitru, A.V. Giannini, M. Luzum, Y. Nara, Acta Phys. Polon. Supp. 12(4), 973–978 (2019)

    Article  Google Scholar 

  45. J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, Phys. Rev. D 80, 034031 (2009)

    Article  ADS  Google Scholar 

  46. B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000)

    Article  ADS  Google Scholar 

  47. Y.V. Kovchegov, H. Weigert, Nucl. Phys. A 807, 158 (2008)

    Article  ADS  Google Scholar 

  48. A. Krasnitz, Y. Nara, R. Venugopalan, Phys. Rev. Lett. 87, 192302 (2001)

    Article  ADS  Google Scholar 

  49. A. Krasnitz, Y. Nara, R. Venugopalan, Nucl. Phys. A 717, 268 (2003)

    Article  ADS  Google Scholar 

  50. D. Kharzeev, E. Levin, K. Tuchin, Phys. Rev. C 75, 044903 (2007)

    Article  ADS  Google Scholar 

  51. B.B. Abelev et al., ALICE Collaboration. Eur. Phys. J. C 73(12), 2662 (2013)

    Article  ADS  Google Scholar 

  52. S. Acharya et al., ALICE Collaboration. JHEP 1811, 013 (2018)

    ADS  Google Scholar 

  53. J. Adam et al., ALICE Collaboration. Phys. Lett. B 753, 319 (2016)

    Article  ADS  Google Scholar 

  54. G. Aad et al., ATLAS Collaboration. New J. Phys. 13, 053033 (2011)

    Article  ADS  Google Scholar 

  55. G. Aad et al., ATLAS Collaboration. Eur. Phys. J. C 76(7), 403 (2016)

    Article  ADS  Google Scholar 

  56. M. Aaboud et al., ATLAS Collaboration. Eur. Phys. J. C 76(9), 502 (2016)

    Article  ADS  Google Scholar 

  57. V. Khachatryan et al., CMS Collaboration. JHEP 1002, 041 (2010)

    Article  ADS  Google Scholar 

  58. V. Khachatryan et al., CMS Collaboration. Phys. Rev. Lett. 105, 022002 (2010)

    Article  ADS  Google Scholar 

  59. F. Duraes, A. Giannini, V.P. Goncalves, F. Navarra, Phys. Rev. C 94(2), 024917 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially financed by the Brazilian funding agencies CNPq, FAPERGS and INCT-FNA (process number 464898/2014-5). A.V.G. acknowledges the Brazilian funding agency FAPESP for financial support through Grants 2017/14974-8 and 2018/23677-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Goncalves.

Additional information

Communicated by Reinhard Alkofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannini, A.V., Goncalves, V.P. & Silva, P.V.R.G. Thermal radiation and inclusive production in the running coupling \(k_T\)-factorization approach. Eur. Phys. J. A 57, 43 (2021). https://doi.org/10.1140/epja/s10050-021-00350-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00350-w

Navigation