Skip to main content
Log in

Structure of the quartetting ground state of \(N=Z\) nuclei

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The formal equivalence between the quartetting picture and the symmetry restored BCS picture is established for the ground state correlations induced by the general isovector-isoscalar pairing interaction. Multiple ground state structures compatible with the particle number and isospin symmetries are evaluated. The competition of isovector and isoscalar correlations is discussed for the \(N=Z\) nuclei above \(^{100}\)Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data are given in the tables and figures. They can also be obtained from the authors.]

References

  1. A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. 110, 936 (1958)

    Article  ADS  Google Scholar 

  2. S. Frauendorf, A. Macchiavelli, Progress Part. Nucl. Phys. 78, 24 (2014)

    Article  ADS  Google Scholar 

  3. J.A. Sheikh, J. Dobaczewski, P. Ring, L.M. Robledo, C. Yannouleas (2019), arXiv:1901.06992

  4. N. Sandulescu, D. Negrea, C.W. Johnson, Phys. Rev. C 86, 041302(R) (2012)

    Article  ADS  Google Scholar 

  5. N. Sandulescu, D. Negrea, J. Dukelsky, C.W. Johnson, Phys. Rev. C 85, 061303(R) (2012)

    Article  ADS  Google Scholar 

  6. N. Sandulescu, D. Negrea, J. Dukelsky, C.W. Johnson, J. Phys. Conf. Ser. 533, 012018 (2014)

    Article  Google Scholar 

  7. N. Sandulescu, D. Negrea, D. Gambacurta, Phys. Lett. B 751, 348 (2015)

    Article  ADS  Google Scholar 

  8. M. Sambataro, N. Sandulescu, Phys. Rev. Lett. 115, 112501 (2015)

    Article  ADS  Google Scholar 

  9. M. Sambataro, N. Sandulescu, Phys. Rev. C 91, 064318 (2015)

    Article  ADS  Google Scholar 

  10. M. Sambataro, N. Sandulescu, Phys. Lett. B 763, 151 (2016)

    Article  ADS  Google Scholar 

  11. M. Sambataro, N. Sandulescu, Eur. Phys. J. A 53, 47 (2017)

    Article  ADS  Google Scholar 

  12. D. Negrea, P. Buganu, D. Gambacurta, N. Sandulescu, Phys. Rev. C 98, 064319 (2018)

    Article  ADS  Google Scholar 

  13. J. Dobes, S. Pittel, Phys. Rev. C 57, 688 (1998)

    Article  ADS  Google Scholar 

  14. N. Sandulescu, B. Errea, J. Dukelsky, Phys. Rev. C 80, 044335 (2009)

    Article  ADS  Google Scholar 

  15. A. Romero, J. Dobaczewski, A. Pastore, Phys. Lett. B 795, 177 (2019)

    Article  MathSciNet  Google Scholar 

  16. V.V. Baran, D.R. Nichita, D. Negrea, D.S. Delion, N. Sandulescu, P. Schuck (2020), arXiv: 2009.00932

  17. M. Sambataro, N. Sandulescu, C. Johnson, Phys. Lett. B 740, 137 (2015)

  18. T. Sogo, R. Lazauskas, G. Röpke, P. Schuck, Phys. Rev. C 79, 051301(R) (2009)

    Article  ADS  Google Scholar 

  19. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)

    Article  ADS  Google Scholar 

  20. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Book  Google Scholar 

  21. V.V. Baran, D.S. Delion, Phys. Lett. B 805, 135462 (2020)

    Article  MathSciNet  Google Scholar 

  22. M. Fellah, T.F. Hammann, D.E. Medjadi, Phys. Rev. C 8, 1585 (1973)

    Article  ADS  Google Scholar 

  23. P. Bonche, H. Flocard, P. Heenen, Comput. Phys. Commun. 171, 49 (2005)

    Article  ADS  Google Scholar 

  24. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 627, 710 (1997)

    Article  ADS  Google Scholar 

  25. G. Röpke, A. Schnell, P. Schuck, U. Lombardo, Phys. Rev. C 61, 024306 (2000)

    Article  ADS  Google Scholar 

  26. P. Möller, A. Sierk, T. Ichikawa, H. Sagawa, Atom. Data Nucl. Data Tables 109–110, 1 (2016)

    Article  ADS  Google Scholar 

  27. G.F. Bertsch, Y. Luo, Phys. Rev. C 81, 064320 (2010)

    Article  ADS  Google Scholar 

  28. A. Gezerlis, G.F. Bertsch, Y.L. Luo, Phys. Rev. Lett. 106, 252502 (2011)

    Article  ADS  Google Scholar 

  29. V.V. Baran, D.S. Delion, Phys. Rev. C 99, 031303 (2019)

    Article  ADS  Google Scholar 

  30. V.V. Baran, D.S. Delion, S. Dolteanu, Phys. Rev. C 100, 034326 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Sandulescu, D. S. Delion and P. Schuck for valuable discussions and observations. This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P1-1.1-PD-2019-0346, within PNCDI III, and PN-19060101/2019-2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Baran.

Additional information

Communicated by David Blaschke

Appendix A

Appendix A

We present below the results obtained using a weaker pairing interaction with respect to the main text, \(V_{0}^{T=1}=V_{0}^{T=0}=300\) MeV fm\(^3\). The Tables 45 and 6 below are constructed in an analogous manner with the Tables 12 and 3 in Sect. 3.

We note that the values of the correlation energies in Table 4 are about half of those in Table 1, in better agreement with the combined contributions to the binding energy of like-particle pairing and proton-neutron correlations (see also the discussion below Eq. 14).

For most nuclei the \(|PQCM\rangle \), \({\mathcal {P}}_{NT}|BCS\rangle \), \(|\text {iv}\oplus \text {is}\rangle \) and \(|\text {iv}\rangle \) ansatzes become numerically equivalent in the present weaker pairing regime, with differences in the correlation energies of 0.01 MeV or less, and overlaps of 99.9% or more with the \(|PQCM\rangle \) state, as seen in Tables 4 and 5.

For the nuclei above \(^{100}\)Sn, the errors for the pure isoscalar solution \(|\text {is}\rangle \) in Table 6 are smaller than those of Table 3, but they still do not show any improvement with increasing mass number.

Table 4 Correlation energies (in MeV) calculated with the states \(|PQCM\rangle \) of Eq. (2), \({\mathcal {P}}_{NT}|BCS\rangle \) of Eq. (6), \(|\text {iv} \oplus \text {is}\rangle \) of Eq. (10) and with \(|\text {iv}\rangle \) and \(|\text {is}\rangle \) of Eq. (9), for \(V_{0}^{T=1}=V_{0}^{T=0}=300\) MeV fm\(^3\)
Table 5 Overlaps (in percentages) between the \(|PQCM\rangle \) state of Eq. (2) and the states \({\mathcal {P}}_{NT}|BCS\rangle \) of Eq. (6), \(|\text {iv} \oplus \text {is}\rangle \) of Eq. (10), \(|\text {iv}\rangle \) and \(|\text {is}\rangle \) of Eq. (9), for \(V_{0}^{T=1}=V_{0}^{T=0}=300\) MeV fm\(^3\)
Table 6 Correlation energies (in MeV) for the states \(|\text {iv}\oplus \text {is}\rangle \) of Eq. (10), \(|\text {iv}\rangle \) and \(|\text {is}\rangle \) of Eq. (9) for 1–7 quartets above \(^{100}\)Sn, together with the relative error of the \(|\text {is}\rangle \) correlation energies with respect to the \(|\text {iv}\oplus \text {is}\rangle \) values, for \(V_{0}^{T=1}=V_{0}^{T=0}=300\) MeV fm\(^3\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serban, A.G., Nichita, D.R., Negrea, D. et al. Structure of the quartetting ground state of \(N=Z\) nuclei. Eur. Phys. J. A 57, 12 (2021). https://doi.org/10.1140/epja/s10050-020-00309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00309-3

Navigation