Skip to main content
Log in

Symmetry conserving coupled cluster doubles wave function and the self-consistent odd particle number RPA

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Mixing single and triple fermions an exact annihilation operator of the Coupled Cluster Doubles wave function with good symmetry was found in Tohyama and Schuck (Phys Rev C 87:044316, 2013). Using these operators with the equation of motion method the so-called self-consistent odd particle number random phase approximation (odd-RPA) was set up. Together with the stationarity condition of the two body density matrix it is shown that the annihilation conditions allow to reduce the order of correlation functions contained in the matrix elements of the odd-RPA equations to a fully self consistent equation for the single particle occupation numbers. Excellent results for the latter and the ground state energies are obtained in an exactly solvable model from weak to strong couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

Notes

  1. The annihilators in the case of pairing are given by

    $$\begin{aligned} q_{\rho }= & {} \sum \limits _{h} y^\rho _{h} \beta _{h} +\sum \limits _{pp'h'} V^\rho _{pp'h'} P^\dag _{pp'}\beta ^\dag _{h'}\\ q_{\alpha }= & {} \sum \limits _{p} y^\alpha _{p}\beta _{p} +\sum \limits _{p'hh'} V^\alpha _{p'hh'} \beta ^\dag _{p'}P^\dag _{hh'} \end{aligned}$$

    The annihilation conditions give the relations

    $$\begin{aligned} \sum \limits _{h'} z_{pp'hh'} y^\rho _{h'}= & {} V^\rho _{pp'h} ,\\ \sum \limits _{p'} y^\alpha _{p'} z_{p'phh'}= & {} V^\alpha _{phh'}. \end{aligned}$$

References

  1. M. Tohyama, P. Schuck, Phys. Rev. C 87, 044316 (2013)

    Article  ADS  Google Scholar 

  2. J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986)

    Google Scholar 

  3. R.I. Bartlett, M. Musial, Rev. Mod. Phys. 79, 291 (2007)

    Article  ADS  Google Scholar 

  4. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rep. Prog. Phys. 77, 096302 (2014)

    Article  ADS  Google Scholar 

  5. Y. Qiu, T.M. Henderson, T. Duguet, G.E. Scuseria, PRC 99, 044301 (2019)

    Article  ADS  Google Scholar 

  6. J.M. Wahlen-Strothman, T.M. Henderson, M.R. Hermes, M. Degroote, Y. Qiu, J. Zhao, J. Dukelsky, G.E. Scuseria, J. Chem. Phys. 146, 054410 (2017)

    Article  Google Scholar 

  7. Y. Qiu, T.M. Henderson, J. Zhao, G.E. Scuseria, J. Chem. Phys. 147, 064111 (2017)

    Article  ADS  Google Scholar 

  8. I am very greatful to Virgil Baran who indicated this to me

  9. H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)

    Article  Google Scholar 

  10. S. Dusuel, J. Vidal, Phys. Rev. Lett. 93, 237204 (2004)

    Article  ADS  Google Scholar 

  11. J. Vidal, G. Palacios, C. Aslangul, Phys. Rev. A 70, 062304 (2004)

    Article  ADS  Google Scholar 

  12. P. Ribeiro, J. Vidal, R. Mosseri, Phys. Rev. Lett. 99, 050402 (2007)

    Article  ADS  Google Scholar 

  13. G. Coló, S. De Leo, Int. J. Mod. Phys. E 27(5), 1850039 (2018)

    Article  ADS  Google Scholar 

  14. O. Castanos, R. Lopez-Pena, J.G. Hirsch, Phys. Rev. B 74, 104118–14 (2008)

    Article  ADS  Google Scholar 

  15. R. Puebla, A. Relano, Phys. Rev. E 92, 012101–9 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Coló, S. De Leo, Mod. Phys. Lett. A 30, 1550196–15 (2015)

    ADS  Google Scholar 

  17. S. Campbell, G. De Chiara, M. Paternostro, G.M. Palma, R. Fazio, Phys. Rev. Lett. 114, 177206–6 (2015)

    Article  ADS  Google Scholar 

  18. J. Ripoche, T. Duguet, J.-P. Ebran, D. Lacroix, Phys. Rev. C 97, 064316 (2018)

    Article  ADS  Google Scholar 

  19. Scuseria et al., J. Chem. Phys. 139, 104113 (2013)

    Article  ADS  Google Scholar 

  20. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Book  Google Scholar 

  21. M. Jemai, P. Schuck, Phys. Rev. C 100, 034311 (2019)

    Article  ADS  Google Scholar 

  22. M. Tohyama, P. Schuck, Eur. Phys. J. A 19, 203 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PS wants to thank Mitsuru Tohyama for past collaboration on odd-RPA. Discussions with Jorge Dukelsky are greatfully acknowledged as well as for suggestions and a carefull reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jemaï.

Additional information

Communicated by Vittorio Somà

Appendices

Appendix A: Stationary condition

The stationary condition implies that the expectation value of the commutator \([H,K^\dag K^\dag ]\) must be zero with a general two-body Hamiltonian (12) where each elements are defined as,

$$\begin{aligned} E_{HF}= & {} \sum \limits _h \epsilon _{hh} +\frac{1}{2} \sum \limits _{hh'} {\bar{v}}_{hh'hh'} , \nonumber \\ H^{20}= & {} \sum \limits _{ph}\biggl ( \epsilon _{ph} +\sum \limits _{h'} {\bar{v}}_{ph'hh'}\biggl ) K^\dag _{ph} +\hbox {h.c.} \nonumber \\ H^{40}= & {} \frac{1}{4} \sum \limits _{pp',hh'} {\bar{v}}_{pp'hh'} K^\dag _{ph} K^\dag _{p'h'} +\hbox {h.c.}, \nonumber \\ H^{11}= & {} \sum \limits _{pp'} \biggl (\epsilon _{pp'}+\sum \limits _{h}{\bar{v}}_{php'h}\biggl ) S_{pp'}\nonumber \\&-\sum \limits _{hh'} \biggl (\epsilon _{h'h} +\sum \limits _{h_1} {\bar{v}}_{h'h_1hh_1} \biggl )S_{hh'} \nonumber \\ H^{31}= & {} \frac{1}{2} \sum \limits _{ph} K^\dag _{ph} \biggl (\sum \limits _{p'p_1} {\bar{v}}_{pp'hp_1} S_{p'p_1}\nonumber \\&-\sum \limits _{h'h_1} {\bar{v}}_{ph_1hh'} S_{h'h_1} \biggr ) + \hbox {h.c.}, \nonumber \\ H^{22}= & {} \sum \limits _{php'h'} {\bar{v}}_{ph'hp'} K^\dag _{ph} K _{h'p'}\nonumber \\&+\frac{1}{4} \sum \limits _{pp'p_1} {\bar{v}}_{pp_1p'p_1} S_{pp'} +\frac{1}{4} \sum \limits _{hh'h_1} {\bar{v}}_{hh_1h'h_1} S_{h'h} \nonumber \\&-\frac{1}{4} \sum \limits _{pp_1p'p_2} {\bar{v}}_{pp'p_1p_2} S_{pp_2} S_{p'p_1}\nonumber \\&-\frac{1}{4} \sum \limits _{hh'h_1h_2} {\bar{v}}_{hh'h_1h_2} S_{h_1h'} S_{h_2h} , \end{aligned}$$
(A1)

where the density matrix operators \(S_{ij}\) are given by

$$\begin{aligned} S_{hh'}=\beta ^\dag _{h} \beta _{h'}, ~~~~~~~~~~~ S_{pp'}=\beta ^\dag _{p} \beta _{p'}. \end{aligned}$$
(A2)

This Hamilton operator is exactly the same as the normal ordered one given in [20], Eqs (E.24) and (E.25). For later convenience we write it here in a slightly non normal ordered form. Let us then calculate this commutator with the general Hamiltonian (12),

$$\begin{aligned}&\left[ H^{11},K^\dag _{ph}K^\dag _{p'h'}\right] = 2\sum \limits _{p_1} \varepsilon _{pp_1}K^\dag _{p_1h}K^\dag _{p'h'}\nonumber \\&\quad -2\sum \limits _{h_1} \varepsilon _{hh_1}K^\dag _{ph_1}K^\dag _{p'h'} \end{aligned}$$
(A3)
$$\begin{aligned}&\left[ H^{20},K^\dag _{ph}K^\dag _{p'h'}\right] = \varepsilon _{ph} K^\dag _{p'h'} +\varepsilon _{p'h'} K^\dag _{ph}\nonumber \\&\quad -\varepsilon _{ph'} K^\dag _{p'h} -\varepsilon _{p'h} K^\dag _{ph'}\nonumber \\&\quad -2K^\dag _{ph} \biggl ( \sum \limits _{h_1} \varepsilon _{p'h_1} S_{h'h_1} + \sum \limits _{p_1} \varepsilon _{p_1h'} S_{p'p_1}\biggr ) \end{aligned}$$
(A4)

with

$$\begin{aligned}&\varepsilon _{pp'}=t_{pp'}+\sum \limits _{h_1}{\bar{v}}_{ph_1p'h_1},\nonumber \\&\quad \varepsilon _{h'h} = t_{h'h}+\sum \limits _{h_1}{\bar{v}}_{h'h_1hh_1},\nonumber \\&\quad \varepsilon _{ph}= t_{ph}+\sum \limits _{h_1}{\bar{v}}_{ph_1hh_1}. \end{aligned}$$
(A5)
$$\begin{aligned}&4\left[ H^{40},K^\dag _{ph}K^\dag _{p'h'}\right] \nonumber \\&\quad = -\sum \limits _{p_1h_1}\left( {\bar{v}}_{p_1h_1p'h} K^0_{ph',h_1p_1} + {\bar{v}}_{p_1h_1ph'} K^0_{p'h,h_1p_1}\right) \nonumber \\&\qquad +\frac{1}{2}\sum \limits _{p_1p_2} {\bar{v}}_{p_2p_1pp_1} K^\dag _{p_2h} K^\dag _{p'h'} \nonumber \\&\qquad +\sum \limits _{p_1p_2h_1h_2} {\bar{v}}_{p_1h_1p_2h_2}\biggl (K^0_{ph,h_1p_1} K^0_{p'h',h_2p_2}\nonumber \\&\qquad + K^0_{p'h',h_1p_1} K^0_{ph,h_2p_2}\biggr )+\frac{1}{2}\sum \limits _{h_1h_2} {\bar{v}}_{hh_1h_2h_1} K^\dag _{ph_2} K^\dag _{p'h'} \nonumber \\&\qquad +2\sum \limits _{p_1p_2h_1h_2} {\bar{v}}_{p_1h_1p_2h_2}\biggl (K^\dag _{ph}K_{h_1p_1}K^0_{p'h',h_2p_2}\nonumber \\&\qquad +K^\dag _{p'h'}K_{h_1p_1}K^0_{ph,h_2p_2}\biggr ) \nonumber \\&\qquad +\sum \limits _{p_1h_1}\biggl ({\bar{v}}_{p'h_1p_1h'} +{\bar{v}}_{p_1h'p'h_1}\biggr ) K^\dag _{ph}K_{h_1p_1}\nonumber \\&\qquad +\sum \limits _{p_1h_1}\biggl ({\bar{v}}_{p_1hph_1} +{\bar{v}}_{ph_1p_1h}\biggr ) K^\dag _{p'h'}K_{h_1p_1} \nonumber \\&\qquad -\sum \limits _{p_1h_1}\biggl ({\bar{v}}_{p'h_1p_1h}+{\bar{v}}_{p_1h_1p'h}\biggr ) K^\dag _{ph'}K_{h_1p_1}\nonumber \\&\qquad -\sum \limits _{p_1h_1}\biggl ({\bar{v}}_{p_1h_1ph'} +{\bar{v}}_{ph'p_1h_1}\biggr ) K^\dag _{p'h}K_{h_1p_1} \end{aligned}$$
(A6)
$$\begin{aligned}&4\left[ H^{22},K^\dag _{ph}K^\dag _{p'h'}\right] \nonumber \\&\quad = -4\sum \limits _{p_1h_1}\biggl ({\bar{v}}_{p_1hh_1p'} K^\dag _{ph'} + {\bar{v}}_{p_1h'h_1p} K^\dag _{p'h}\biggr ) K^\dag _{p_1h_1} \nonumber \\&\qquad +4\sum \limits _{p_1p_2h_1h_2} {\bar{v}}_{p_1h_2h_1p_2} K^\dag _{p_1h_1}\biggl (K^\dag _{ph} K^0_{p'h',h_2p_2}\nonumber \\&\qquad + K^\dag _{p'h'} K^0_{ph,h_2p_2}\biggr ) \nonumber \\&\qquad -\sum \limits _{p_1p_2p_3}\biggl [ ({\bar{v}}_{p_2p_3pp_1}+{\bar{v}}_{p_2p_3p_1p})K^\dag _{p'h'}K^\dag _{p_3h}S_{p_2p_1}\nonumber \\&\qquad + ({\bar{v}}_{p_3p_2p'p_1}+{\bar{v}}_{p_2p_3p_1p'})K^\dag _{ph}K^\dag _{p_2h}S_{p_3p_1} \biggr ] \nonumber \\&\qquad -\sum \limits _{p_1p_2}\biggl [ \biggl ({\bar{v}}_{p_1p_2p'p} + {\bar{v}}_{p_2p_1pp'} \biggr ) K^\dag _{p_1h}K^\dag _{p_2h'}\nonumber \\&\qquad +{\bar{v}}_{p_1p_2p'p_2} K^\dag _{ph}K^\dag _{p_1h'} + {\bar{v}}_{p_1p_2pp_2} K^\dag _{p'h'}K^\dag _{p_1h} \biggr ] \nonumber \\&\qquad -\sum \limits _{h_1h_2h_3}\biggl [ \biggl ({\bar{v}}_{h_3hh_1h_2}+{\bar{v}}_{hh_3h_1h_2}\biggr ) K^\dag _{p'h'}K^\dag _{ph_1}S_{h_2h_3}\nonumber \\&\qquad + \biggl ({\bar{v}}_{h'h_3h_2h_1}+{\bar{v}}_{h_3h'h_1h_2}\biggr ) K^\dag _{ph}K^\dag _{p'h_1}S_{h_2h_3}\biggr ] \nonumber \\&\qquad -\sum \limits _{h_1h_2}\biggl [ \biggl ({\bar{v}}_{h'hh_1h_2} + {\bar{v}}_{hh'h_2h_1}\biggr ) K^\dag _{ph_1}K^\dag _{p'h_2}\nonumber \\&\qquad +{\bar{v}}_{h'h_2h_1h_2} K^\dag _{ph}K^\dag _{p'h_1} +{\bar{v}}_{hh_2h_1h_2} K^\dag _{p'h'}K^\dag _{ph_1}\biggr ] \end{aligned}$$
(A7)
$$\begin{aligned}&2\left[ H^{31},K^\dag _{ph}K^\dag _{p'h'}\right] =K^\dag _{ph} \sum \limits _{p_1h_1} K^\dag _{p_1h_1} \biggl (\sum \limits _{p_2} {\bar{v}}_{p_1p_2h_1p'} K^\dag _{p_2h'}\nonumber \\&\quad - \sum \limits _{h_2} {\bar{v}}_{p_1h'h_1h_2} K^\dag _{p'h_2}\biggr ) \nonumber \\&\quad + K^\dag _{p'h'} \sum \limits _{p_1h_1} K^\dag _{p_1h_1}\biggl (\sum \limits _{p_2} {\bar{v}}_{p_1p_2h_1p} K^\dag _{p_2h}\nonumber \\&\quad - \sum \limits _{h_2} {\bar{v}}_{p_1hh_1h_2} K^\dag _{ph_2}\biggr ) \nonumber \\&\quad + K^\dag _{ph} \sum \limits _{p_1h_1}\biggl (\sum \limits _{p_2} {\bar{v}}_{p_1p'h_1p_2} K^\dag _{p_2h'}\nonumber \\&\quad - \sum \limits _{h_2} {\bar{v}}_{p_1h_2h_1h'} K^\dag _{p'h_2}\biggr ) K_{h_1p_1} \nonumber \\&\quad + K^\dag _{p'h'} \sum \limits _{p_1h_1}\biggl (\sum \limits _{p_2} {\bar{v}}_{p_1ph_1p_2} K^\dag _{p_2h} - \sum \limits _{h_2} {\bar{v}}_{p_1h_2h_1h} K^\dag _{ph_2}) K_{h_1p_1} \nonumber \\&\quad +\biggl (K^\dag _{ph}+K^\dag _{p'h'}\biggl ) \sum \limits _{p_1h_1} K_{h_1p_1}\biggl (\sum \limits _{p_2p_3} {\bar{v}}_{p_1p_2h_1p_3} S_{p_3p_2}\nonumber \\&\quad - \sum \limits _{h_2h_3} {\bar{v}}_{p_1h_3h_1h_2} S_{h_3h_2}\biggr ) \nonumber \\&\quad + \biggl (\sum \limits _{p_2p_3} {\bar{v}}_{p'p_2hp_3} S_{p_3p_2} - \sum \limits _{h_2h_3} {\bar{v}}_{p'h_3hh_2} S_{h_3h_2}\biggr )K^\dag _{ph'}\nonumber \\&\quad +\biggl (\sum \limits _{p_2p_3} {\bar{v}}_{pp_2h'p_3} S_{p_3p_2} - \sum \limits _{h_2h_3} {\bar{v}}_{ph_3h'h_2} S_{h_3h_2}\biggr )K^\dag _{p'h} \nonumber \\&\quad +\sum \limits _{p_1h_1}\biggl (\sum \limits _{p_2p_3} {\bar{v}}_{p_1p_2h_1p_3} S_{p_3p_2}\nonumber \\&\quad - \sum \limits _{h_2h_3} {\bar{v}}_{p_1h_3h_1h_2} S_{h_3h_2}\biggr )\biggl ( K^\dag _{p'h'}K^0_{ph,h_1p_1}+K^\dag _{ph}K^0_{p'h',h_1p_1}\biggr ) \end{aligned}$$
(A8)

with

$$\begin{aligned} K^0_{p_2h_2,h_1p_1}= & {} \left[ K_{h_1p_1},K^\dag _{p_2h_2}\right] \nonumber \\= & {} \delta _{p_1p_2} \delta _{h_1h_2} -\delta _{p_1p_2} S_{h_1h_2} -\delta _{h_1h_2} S_{p_1p_2} \end{aligned}$$
(A9)

Summing the mean values of the different commutators in the ground state \(\vert \hbox {Z}\rangle \) for \(\langle [H,K^{\dag }_{ph}K^{\dag }_{p'h'}]\rangle =0\) yields a relation between \(\langle S_{kk'}S_{ll'}\rangle \) and \(\langle S_{nn'}\rangle \).

Appendix B: Calculation of correlation functions in the Lipkin model

All correlation functions can be expressed in terms of z, \(\langle J_0\rangle \) and \(\langle J^2_0\rangle \). We also have

$$\begin{aligned} n_0= & {} \tfrac{N}{2}-\langle J_0\rangle , \quad n_1 = \tfrac{N}{2}+\langle J_0\rangle \end{aligned}$$
(B1)

From the first Eq. (31), we find

$$\begin{aligned} z\langle J_{+}^{2}\rangle =\tfrac{N}{2}+\langle J_{0}\rangle \end{aligned}$$
(B2)

Multiplying (31) by \(J^2_+\), gives

$$\begin{aligned} \langle J^2_+ J_{0}\rangle = -\tfrac{N}{2} \langle J^2_+ \rangle +z\langle J_{+}^{4}\rangle \end{aligned}$$
(B3)

which yields

$$\begin{aligned} 2z\langle J_{+}^{4}\rangle = N \langle J^2_+\rangle +2\langle J^2_+ J_{0}\rangle \end{aligned}$$
(B4)

Multiplying the second Eq. (32) by \(J_+\), we can write

$$\begin{aligned} \langle J_+ J_{-} \rangle = z(N-1)\langle J^2_{+}\rangle -z^{2} \langle J_{+}^{4}\rangle \end{aligned}$$
(B5)

which leads to

$$\begin{aligned} z^{2}\langle J_{+}^{4}\rangle= & {} (N-1)z \langle J^2_{+}\rangle -\langle J_+ J_{-}\rangle \end{aligned}$$
(B6)

Then, with (B4) and (B6), we find

$$\begin{aligned} z\langle J^2_+ J_{0}\rangle =(\tfrac{N}{2} -1)z\langle J^2_{+}\rangle - \langle J_+ J_{-}\rangle \end{aligned}$$
(B7)

We multiply (31) from the left by \(J_0\),

$$\begin{aligned} J^2_0|Z\rangle= & {} -\tfrac{N}{2}J_0|Z\rangle +z J_0J^2_+|Z\rangle \nonumber \\= & {} -\tfrac{N}{2}J_0|Z\rangle +2z J^2_+|Z\rangle +z J^2_+J_0|Z\rangle \end{aligned}$$
(B8)

Replacing all terms of (B8) by there mean values, we find the Casimir relation

$$\begin{aligned} J_{+}J_{-}|Z\rangle =\left( \tfrac{1}{4}N(N+2)-J^2_0 + J_{0}\right) |Z\rangle \end{aligned}$$
(B9)

In summary, the correlation functions are given by

$$\begin{aligned} 2z\langle J^2_+\rangle= & {} N +2\langle J_0\rangle \nonumber \\ \langle J_{+}J_{-}\rangle= & {} \frac{1}{4}N(N+2)-\langle J^2_0 \rangle + \langle J_0\rangle \nonumber \\ z\langle J^2_+ J_0\rangle= & {} \frac{1}{2}(N-2)z\langle J^2_+\rangle -\langle J_{+}J_{-}\rangle \nonumber \\ z\langle J_+J_-J_0\rangle= & {} \frac{N}{2}(N+2)z +\frac{1}{2}(N-6)z\langle J_{+}J_{-}\rangle \nonumber \\&~ -(N-4)z\langle J_0\rangle -\langle J^2_+\rangle \end{aligned}$$
(B10)

what allows to solve the equation for \(\langle J_0\rangle \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemaï, M., Schuck, P. Symmetry conserving coupled cluster doubles wave function and the self-consistent odd particle number RPA. Eur. Phys. J. A 56, 268 (2020). https://doi.org/10.1140/epja/s10050-020-00276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00276-9

Navigation