Skip to main content
Log in

On nonlinearity in hydrodynamic response to the initial geometry in relativistic heavy-ion collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the context of event-by-event hydrodynamic description, we analyze the implications of two models characterized by distinct initial conditions. The initial energy density of the first model adopts a Gaussian-type distribution, while those of the second one are features by high energy peripheral tubes. We calibrate the initial conditions of both models so that their initial probability distribution of eccentricity are mostly identical. Subsequently, the resultant scaled probability distributions of collective flow and the correlations between flow harmonic and eccentricity coefficients are investigated. Besides, the calculations are carried out for particle correlations regarding the symmetric cumulant, mixed harmonics, and nonlinear response coefficients. Although the resultant two-particle correlations possess similar shapes, numerical calculations indicate a subtle difference between the two models. To be specific, the difference resides in more detailed observables such as the probability distributions of elliptic flow as well as Pearson correlation coefficient regarding higher-order harmonics. We discuss several essential aspects concerning the linearity and nonlinearity between initial eccentricities and final state anisotropies. Further implications are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data generated during the numerical study has exceeded the size of 2T and we have no condition to save those data for an extensive period. However, we have saved all the configuration files and set-ups for the numerical simulations and therefore, if necessary, we can regenerate identical results for any further investigation.]

References

  1. U.W. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). arXiv:1301.2826

    ADS  Google Scholar 

  2. C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013). arXiv:1301.5893

    ADS  Google Scholar 

  3. R. Derradi de Souza, T. Koide, T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016). arXiv:1506.03863

    ADS  Google Scholar 

  4. T. Hirano, P. Huovinen, K. Murase, Y. Nara, Prog. Part. Nucl. Phys. 70, 108 (2013). arXiv:1204.5814

    ADS  Google Scholar 

  5. T. Kodama, H. Stocker, N. Xu, J. Phys. G Nucl. Part. Phys. 41, 120301 (2014)

    ADS  Google Scholar 

  6. W. Florkowski, M.P. Heller, M. Spalinski, Rep. Prog. Phys. 81, 046001 (2018). arXiv:1707.02282

    ADS  Google Scholar 

  7. D. Teaney, L. Yan, Phys. Rev. C 83, 064904 (2011). arXiv:1010.1876

    ADS  Google Scholar 

  8. D. Teaney, L. Yan, Phys. Rev. C 86, 044908 (2012). arXiv:1206.1905

    ADS  Google Scholar 

  9. F.G. Gardim, F. Grassi, M. Luzum, J.-Y. Ollitrault, Phys. Rev. C 85, 024908 (2012). arXiv:1111.6538

    ADS  Google Scholar 

  10. H. Niemi, G. Denicol, H. Holopainen, P. Huovinen, Phys. Rev. C 87, 054901 (2012). arXiv:1212.1008

    ADS  Google Scholar 

  11. W.-L. Qian et al., J. Phys. G 41, 015103 (2014). arXiv:1305.4673

    ADS  Google Scholar 

  12. F.G. Gardim, F. Grassi, P. Ishida, M. Luzum, J.-Y. Ollitrault, Phys. Rev. C 100, 054905 (2019). arXiv:1906.03045

    ADS  Google Scholar 

  13. J. Fu, Phys. Rev. C 92, 024904 (2015)

    ADS  Google Scholar 

  14. S. Floerchinger, U.A. Wiedemann, Phys. Rev. C 88, 044906 (2013). arXiv:1307.7611

    ADS  Google Scholar 

  15. C.E. Coleman-Smith, H. Petersen, R.L. Wolpert, J. Phys. G 40, 095103 (2013). arXiv:1204.5774

    ADS  Google Scholar 

  16. S. Floerchinger, U.A. Wiedemann, Phys. Lett. B 728, 407 (2014). arXiv:1307.3453

    ADS  Google Scholar 

  17. A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, Y. Zhou, Phys. Rev. C 89, 064904 (2014). arXiv:1312.3572

    ADS  Google Scholar 

  18. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, Phys. Rev. C 88, 024909 (2013). arXiv:1307.0980

    ADS  Google Scholar 

  19. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, Phys. Lett. B 742, 94 (2015). arXiv:1411.5160

    ADS  Google Scholar 

  20. L. Yan, J.-Y. Ollitrault, Phys. Lett. B 744, 82 (2015). arXiv:1502.02502

    ADS  Google Scholar 

  21. L. Yan, S. Pal, J.-Y. Ollitrault, Nucl. Phys. A 956, 340 (2016). arXiv:1601.00040

    ADS  Google Scholar 

  22. STAR, L. Adamczyk et al., Phys. Rev. C 98, 034918 (2018). arXiv:1701.06496

  23. STAR, L. Adamczyk et al., Phys. Lett. B 790, 81 (2019). arXiv:1701.06497

  24. CMS, S. Chatrchyan et al., Phys. Rev. C 89, 044906 (2014). arXiv:1310.8651

  25. ATLAS, G. Aad et al., Phys. Rev. C 90, 024905 (2014). arXiv:1403.0489

  26. J. Shlens, CoRR abs/1404.1100 (2014). arXiv:1404.1100

  27. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, D. Teaney, Phys. Rev. Lett. 114, 152301 (2015). arXiv:1410.7739

    ADS  Google Scholar 

  28. P. Bozek, Phys. Rev. C 97, 034905 (2018). arXiv:1711.07773

    ADS  Google Scholar 

  29. M. Hippert et al., Phys. Rev. C 101, 034903 (2020). arXiv:1906.08915

    ADS  Google Scholar 

  30. Z. Liu, A. Behera, H. Song, J. Jia, (2020). arXiv:2002.06061

  31. Y. Hama, R.P.G. Andrade, F. Grassi, W.-L. Qian, Nonlinear Phenom. Complex Syst. 12, 466 (2009). arXiv:0911.0811

    Google Scholar 

  32. R. Andrade, F. Grassi, Y. Hama, W.-L. Qian, J. Phys. G 37, 094043 (2010). arXiv:0912.0703

    ADS  Google Scholar 

  33. R.P.G. Andrade, F. Grassi, Y. Hama, W.-L. Qian, Phys. Lett. B 712, 226 (2012). arXiv:1008.4612

    ADS  Google Scholar 

  34. H. Drescher, S. Ostapchenko, T. Pierog, K. Werner, Phys. Rev. C 65, 054902 (2002). arXiv:hep-ph/0011219

    ADS  Google Scholar 

  35. K. Werner, F.-M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006). arXiv:hep-ph/0506232

    ADS  Google Scholar 

  36. Y. Hama, R.P. Andrade, F. Grassi, J. Noronha, W.-L. Qian, Acta Phys. Polon. Suppl. 6, 513 (2013). arXiv:1212.6554

    Google Scholar 

  37. D. Wen et al., J. Phys. G 46, 035103 (2019). arXiv:1808.03775

    ADS  Google Scholar 

  38. H. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner, Phys. Rep. 350, 93 (2001). arXiv:hep-ph/0007198

    ADS  Google Scholar 

  39. K. Werner, I. Karpenko, T. Pierog, Phys. Rev. Lett. 106, 122004 (2011). arXiv:1011.0375

    ADS  Google Scholar 

  40. K. Werner, M. Bleicher, B. Guiot, I. Karpenko, T. Pierog, Phys. Rev. Lett. 112, 232301 (2014). arXiv:1307.4379

    ADS  Google Scholar 

  41. Y. Hama, T. Kodama, O. Socolowski Jr., Braz. J. Phys. 35, 24 (2005). arXiv:hep-ph/0407264

    ADS  Google Scholar 

  42. J. Takahashi et al., Phys. Rev. Lett. 103, 242301 (2009). arXiv:0902.4870

    ADS  Google Scholar 

  43. W.-L. Qian et al., Braz. J. Phys. 37, 767 (2007). arXiv:nucl-th/0612061

    ADS  Google Scholar 

  44. W.-L. Qian et al., Int. J. Mod. Phys. E 16, 1877 (2007). arXiv:nucl-th/0703078

    ADS  Google Scholar 

  45. D.M. Dudek et al., Int. J. Mod. Phys. E 27, 1850058 (2018). arXiv:1409.0278

    ADS  Google Scholar 

  46. W.M. Castilho, W.-L. Qian, Y. Hama, T. Kodama, Phys. Lett. B 777, 369 (2018). arXiv:1707.09878

    ADS  Google Scholar 

  47. J.J. Monaghan, Ann. Rev. Astron. Astrophys. 30, 543 (1992)

    ADS  Google Scholar 

  48. C. Aguiar, T. Kodama, T. Osada, Y. Hama, J. Phys. G 27, 75 (2001). arXiv:hep-ph/0006239

    ADS  Google Scholar 

  49. P. Mota, W. Chen, W.-L. Qian, Commun. Theor. Phys. 68, 382 (2017). arXiv:1704.06165

    ADS  Google Scholar 

  50. C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 110, 012302 (2013). arXiv:1209.6330

    ADS  Google Scholar 

  51. P. Bozek, W. Broniowski, Phys. Rev. C 88, 014903 (2013). arXiv:1304.3044

    ADS  Google Scholar 

  52. B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010). arXiv:1003.0194

    ADS  Google Scholar 

  53. G.-Y. Qin, H. Petersen, S.A. Bass, B. Muller, Phys. Rev. C 82, 064903 (2010). arXiv:1009.1847

    ADS  Google Scholar 

  54. B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011). arXiv:1009.3244

    ADS  Google Scholar 

  55. J. Xu, C.M. Ko, Phys. Rev. C 83, 021903 (2011). arXiv:1011.3750

    ADS  Google Scholar 

  56. G.-L. Ma, X.-N. Wang, Phys. Rev. Lett. 106, 162301 (2011). arXiv:1011.5249

    ADS  Google Scholar 

  57. H. Petersen, G.-Y. Qin, S.A. Bass, B. Muller, Phys. Rev. C 82, 041901 (2010). arXiv:1008.0625

    ADS  Google Scholar 

  58. R.P.G. Andrade, F. Grassi, Y. Hama, W.L. Qian, Nucl. Phys. A 854, 81 (2011). arXiv:1008.0139

    ADS  Google Scholar 

  59. W.-L. Qian, R. Andrade, F. Gardim, F. Grassi, Y. Hama, Phys. Rev. C 87, 014904 (2013). arXiv:1207.6415

    ADS  Google Scholar 

  60. W.M. Castilho, W.-L. Qian, F.G. Gardim, Y. Hama, T. Kodama, Phys. Rev. C 95, 064908 (2017). arXiv:1610.04108

    ADS  Google Scholar 

  61. ALICE, J. Adam et al., Phys. Rev. Lett. 117, 182301 (2016). arXiv:1604.07663

  62. Y. Xu et al., Phys. Rev. C 96, 024902 (2017). arXiv:1703.09178

    ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). A part of the work was developed under the project INCT-FNA Proc. no. 464898/2014-5, the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP), also, the National Natural Science Foundation of China (NNSFC) under contract no. 11805166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Liang Qian.

Additional information

Communicated by Giorgio Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, D., Lin, K., Qian, WL. et al. On nonlinearity in hydrodynamic response to the initial geometry in relativistic heavy-ion collisions. Eur. Phys. J. A 56, 222 (2020). https://doi.org/10.1140/epja/s10050-020-00235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00235-4

Navigation