Skip to main content
Log in

Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC and LHC

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this article, we briefly review recent progress on hydrodynamic modelling and its implementations to relativistic heavy-ion collisions at RHIC and LHC. The related topics include: (1) initial-state fluctuations, final-state correlations and event-by-event hydrodynamics, (2) extracting the QGP shear viscosity from flow data, (3) flow and hydrodynamics in p + Pb collisions at \(\sqrt {s_{NN}}=5.02 \ \text {TeV}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. BRAHMS Collaboration: I Arsene et al, Nucl. Phys. A 757, 1 (2005) PHOBOS Collaboration: B B Back et al, ibid, p. 28 STAR Collaboration: J Adams et al, ibid, p. 102 PHENIX Collaboration: K Adcox et al, ibid, p. 184

  2. M Gyulassy, in: Structure and dynamics of elementary matter edited by W Greiner et al, NATO Science Series II: Mathematics, physics and chemistry, Vol. 166 (Kluwer Academic, Dordrecht, 2004), p. 159–182, arXiv:nucl-th/0403032 M Gyulassy and L McLerran, Nucl. Phys. A 750, 30 (2005) E V Shuryak, ibid, p. 64

  3. B Muller and J L Nagle, Ann. Rev. Nucl. Part. Sci. 56, 93 (2006) B Muller, J Schukraft and B Wyslouch, Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)

  4. P Huovinen, in: Quark gluon plasma 3 edited by R C Hwa and X N Wang (World Scientific, Singapore, 2004), p. 600, nucl-th/0305064 P F Kolb and U Heinz, ibid, p. 634, nucl-th/0305084

  5. U Heinz and R Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013)

    Article  ADS  Google Scholar 

  6. C Gale, S Jeon and B Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)

    Article  ADS  Google Scholar 

  7. D A Teaney, arXiv:0905.2433 [nucl-th]

  8. P Romatschke, Int. J. Mod. Phys. E 19, 1 (2010)

    Article  ADS  Google Scholar 

  9. P Romatschke and U Romatschke, Phys. Rev. Lett. 99, 172301 (2007) M Luzum and P Romatschke, Phys. Rev. C 78, 034915 (2008)

  10. H Song and U Heinz, Phys. Lett. B658, 279 (2008); Phys. Rev. C 77, 064901 (2008); Phys. Rev. C 78, 024902 (2008) H Song, Causal viscous hydrodynamics for relativistic heavy ion collisions, Ph.D. Thesis (The Ohio State University, August 2009), arXiv:0908.3656 [nucl-th]

  11. K Dusling and D Teaney, Phys. Rev. C 77, 034905 (2008)

    Article  ADS  Google Scholar 

  12. D Molnar and P Huovinen, J. Phys. G 35, 104125 (2008)

    Article  ADS  Google Scholar 

  13. P Bozek, Phys. Rev. C 81, 034909 (2010)

    Article  ADS  Google Scholar 

  14. A K Chaudhuri, J. Phys. G 37, 075011 (2010)

    Article  ADS  Google Scholar 

  15. B Schenke, S Jeon and C Gale, Phys. Rev. Lett. 106, 042301 (2011); Phys. Rev. C 85, 024901 (2012)

  16. P F Kolb and R Rapp, Phys. Rev. C 67, 044903 (2003)

    Article  ADS  Google Scholar 

  17. P Huovinen, Eur. Phys. J. A 37, 121 (2008)

    Article  ADS  Google Scholar 

  18. T Hirano and M Gyulassy, Nucl. Phys. A 769, 71 (2006) T Hirano, U Heinz, D Kharzeev, R Lacey and Y Nara, Phys. Lett. B 636, 299 (2006) T Hirano, U W Heinz, D Kharzeev, R Lacey and Y Nara, J. Phys. G 34, S879 (2007)

  19. H Song, S A Bass and U Heinz, Phys. Rev. C 83, 024912 (2011) H Song, Eur. Phys. J. A 48, 163 (2012)

  20. R A Soltz, I Garishvili, M Cheng, B Abelev, A Glenn, J Newby, L A Linden Levy and S Pratt, Phys. Rev. C 87, 044901 (2013)

    Article  ADS  Google Scholar 

  21. S Ryu, S Jeon, C Gale, B Schenke and C Young, Nucl. Phys. A 904–905, 389c (2013)

    Article  Google Scholar 

  22. I Karpenko, M Bleicher, P Huovinen and H Petersen, arXiv:1311.0133 [nucl-th]

  23. H Song, S A Bass, U Heinz, T Hirano and C Shen, Phys. Rev. Lett. 106, 192301 (2011); Erratum, ibid. 109, 139904 (2012)

  24. H Song, S A Bass, U Heinz, T Hirano and C Shen, Phys. Rev. C 83, 054910 (2011); Erratum, ibid. C 86, 059903 (2012)

  25. PHOBOS Collaboration: B Alver and et al., Phys. Rev. Lett. 98, 242302 (2007)

    Article  Google Scholar 

  26. H J Drescher and Y Nara, Phys. Rev. C 75, 034905 (2007); Phys. Rev. C 76, 041903(R) (2007)

  27. T Hirano and Y Nara, Phys. Rev. C 79, 064904 (2009) T Hirano, P Huovinen and Y Nara, Phys. Rev. C 83, 021902 (2011)

  28. A Dumitru and Y Nara, Phys. Rev. C 85, 034907 (2012)

    Article  ADS  Google Scholar 

  29. B Muller and A Schafer, Phys. Rev. D 85, 114030 (2012)

    Article  ADS  Google Scholar 

  30. J S Moreland, Z Qiu and U W Heinz, Nucl. Phys. A 904–905, 815c (2013)

    Article  Google Scholar 

  31. B Schenke, P Tribedy and R Venugopalan, Phys. Rev. C 86, 034908 (2012)

    Article  ADS  Google Scholar 

  32. C Gale, S Jeon, B Schenke, P Tribedy and R Venugopalan, Phys. Rev. Lett. 110, 012302 (2013)

    Article  ADS  Google Scholar 

  33. L Pang, Q Wang and X-N Wang, Phys. Rev. C 86, 024911 (2012); Nucl. Phys. A 904–905, 811c (2013)

  34. PHENIX Collaboration: A Adare and et al., Phys. Rev. Lett. 107, 252301 (2011)

  35. STAR Collaboration: L Adamczyk and et al., Phys. Rev. C 88, 014904 (2013)

  36. ALICE Collaboration: K Aamodt and et al., Phys. Rev. Lett. 107, 032301 (2011)

    Article  ADS  Google Scholar 

  37. ALICE Collaboration: K Aamodt and et al., Phys. Lett. B 708, 249 (2012)

    Article  ADS  Google Scholar 

  38. ATLAS Collaboration; G Aad and et al., Phys. Rev. C 86, 014907 (2012)

    Article  ADS  Google Scholar 

  39. ATLAS Collaboration: J Jia, Nucl. Phys. A 904–905, 421c (2013) ATLAS Collaboration: G Aad et al, J. High Energy Phys. 1311, 183 (2013)

  40. ATLAS Collaboration: J Jia, Nucl. Phys. A 910–911, 276 (2013)

    Google Scholar 

  41. H Petersen, G Y Qin, S A Bass and B Muller, Phys. Rev. C 82, 041901 (2010)

    Article  ADS  Google Scholar 

  42. G Y Qin, H Petersen, S A Bass and B Muller, Phys. Rev. C 82, 064903 (2010)

    Article  ADS  Google Scholar 

  43. H Holopainen, H Niemi and K J Eskola, Phys. Rev. C 83, 034901 (2011)

    Article  ADS  Google Scholar 

  44. Z Qiu and U Heinz, Phys. Rev. C 84, 024911 (2011)

    Article  ADS  Google Scholar 

  45. Z Qiu and U Heinz, Phys. Lett. B 717, 261 (2012)

    Article  ADS  Google Scholar 

  46. M Luzum and H Petersen, arXiv:1312.5503 [nucl-th]

  47. H Song, Nucl. Phys. A 904–905, 114c (2013)

  48. W Israel, Ann. Phys. (N.Y.) 100, 310 (1976) W Israel and J M Stewart, ibid. 118, 341 (1979)

  49. A Muronga and D H Rischke, arXiv:nucl-th/0407114 A Muronga, Phys. Rev. C 76, 014909 (2007) [49a] Here we concentrate on the second-order viscous hydrodynamics for a near-equilibrium system with isotropic momentum distributions. For very early fluid expansion, one needs to implement anisotropic viscous hydrodynamics using a reorganized formalism to incorporate the large momentum anisotropy. Recent developments can be found in [50–52].

  50. M Martinez and M Strickland, Nucl. Phys. A 848, 183 (2010); Nucl. Phys. A 856, 68 (2011) M Martinez, R Ryblewski and M Strickland, Phys. Rev. C 85, 064913 (2012)

  51. W Florkowski and R Ryblewski, Phys. Rev. C 83, 034907 (2011) R Ryblewski and W Florkowski, Eur. Phys. J. C 71, 1761 (2011); Phys. Rev. C 85, 064901 (2012) W Florkowski, R Maj, R Ryblewski and M Strickland, Phys. Rev. C 87, 034914 (2013) W Florkowski, R Ryblewski and M Strickland, Nucl. Phys. A 916, 249 (2013)

  52. D Bazow, U W Heinz and M Strickland, arXiv:1311. 6720 [nucl-th]

  53. P Huovinen and P Petreczky, Nucl. Phys. A 837, 26 (2010)

    Article  ADS  Google Scholar 

  54. C Shen, U Heinz, P Huovinen and H Song, Phys. Rev. C 82, 054904 (2010)

    Article  ADS  Google Scholar 

  55. P Braun-Munzinger, D Magestro, K Redlich and J Stachel, Phys. Lett. B 518, 41 (2001)

    Article  ADS  Google Scholar 

  56. F Cooper and G Frye, Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  57. https://wiki.bnl.gov/TECHQM/index.php/ Code_verification_for_viscous_hydrodynamics

  58. P Bozek, Phys. Rev. C 85, 034901 (2012)

    Article  ADS  Google Scholar 

  59. J Vredevoogd and S Pratt, Phys. Rev. C 85, 044908 (2012)

    Article  ADS  Google Scholar 

  60. C Nonaka, Y Akamatsu and M Takamoto, Nucl. Phys. A 904–905, 405c (2013)

    Article  Google Scholar 

  61. L Del Zanna, V Chandra, G Inghirami, V Rolando, A Beraudo, A De Pace, G Pagliara, A Drago and et al., Eur. Phys. J. C 73, 2524 (2013)

    Article  ADS  Google Scholar 

  62. I Karpenko, P Huovinen and M Bleicher, arXiv:1312. 4160 [nucl-th]

  63. C Shen, U Heinz and B Schenke, unpublished notes

  64. S A Bass and A Dumitru, Phys. Rev. C 61, 064909 (2000)

    Article  ADS  Google Scholar 

  65. D Teaney, J Lauret and E V Shuryak, Phys. Rev. Lett. 86, 4783 (2001); arXiv:nucl-th/0110037; Nucl. Phys. A 698, 479 (2002)

  66. C Nonaka and S A Bass, Phys. Rev. C 75, 014902 (2007)

    Article  ADS  Google Scholar 

  67. H Song, S Bass and U W Heinz, arXiv:1311.0157[nucl-th]

  68. U Heinz, C Shen and H Song, AIP Conf. Proc. 1441, 766 (2012) [68a] The multipions to baryon–antibaryon channels (\(n \pi \rightarrow B \bar {B}\)) are not included in UrQMD, which breaks the detailed balance for an equilibrated system. For a realistic hadronic expansion from VISHNU, the system quickly cools down and evolves out-off equilibrium, suppressing the effects from \(n \pi \rightarrow B \bar {B}\) [69].

  69. S Bass, private comunications

  70. M Miller and R Snellings, arXiv:nucl-ex/0312008

  71. B Alver and et al., Phys. Rev. C 77, 014906 (2008)

    Article  ADS  Google Scholar 

  72. Z Qiu and U Heinz, AIP Conf. Proc. 1441, 774 (2012)

    Article  ADS  Google Scholar 

  73. S A Bass et al, Prog. Part. Nucl. Phys. 41, 255 (1998) M Bleicher et al, J. Phys. G 25, 1859 (1999)

  74. K Werner, I Karpenko, T Pierog, M Bleicher and K Mikhailov, Phys. Rev. C 83, 044915 (2011)

    Article  ADS  Google Scholar 

  75. Z -W Lin, C M Ko, B -A Li, B Zhang and S Pal, Phys. Rev. C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  76. B Alver and G Roland, Phys. Rev. C 81, 054905 (2010); Erratum, ibid. C 82, 039903 (2010)

  77. B H Alver, C Gombeaud, M Luzum and J Y Ollitrault, Phys. Rev. C 82, 034913 (2010) R S Bhalerao, M Luzum and J Y Ollitrault, Phys. Rev. C 84, 034910 (2011)

  78. E Retinskaya, M Luzum and J-Y Ollitrault, arXiv:1311.5339 [nucl-th] [78a] Here we concentrate on the QGP shear viscosity. The bulk viscous effects are generally neglected during the extraction of the QGP shear viscosity. For recent progress related to the bulk viscosity, please refer to refs [79–85].

  79. R J Fries, B Muller and A Schafer, Phys. Rev. C 78, 034913 (2008)

    Article  ADS  Google Scholar 

  80. G Torrieri and I Mishustin, Phys. Rev. C 78, 021901 (2008)

    Article  ADS  Google Scholar 

  81. H Song and U Heinz, Phys. Rev. C 81, 024905 (2010); Nucl. Phys. A 830, 467C (2009)

  82. A Monnai and T Hirano, Phys. Rev. C 80, 054906 (2009)

    Article  ADS  Google Scholar 

  83. G S Denicol, T Kodama, T Koide and P Mota, Phys. Rev. C 80, 064901 (2009)

    Article  ADS  Google Scholar 

  84. K Dusling and T Schäfer, Phys. Rev. C 85, 044909 (2012)

    Article  ADS  Google Scholar 

  85. J Noronha-Hostler, G S Denicol, J Noronha, R P G Andrade and F Grassi, Phys. Rev. C 88, 044916 (2013)

    Article  ADS  Google Scholar 

  86. H Song and U Heinz, J. Phys. G 36, 064033 (2009)

    Article  ADS  Google Scholar 

  87. J Y Ollitrault, A M Poskanzer and S A Voloshin, Phys. Rev. C 80, 014904 (2009)

    Article  ADS  Google Scholar 

  88. H Song, S A Bass and U Heinz, Phys. Rev. C 83, 054912 (2011)

    Article  ADS  Google Scholar 

  89. C Shen, U Heinz, P Huovinen and H Song, Phys. Rev. C 84, 044903 (2011)

    Article  ADS  Google Scholar 

  90. Z Qiu, C Shen and U Heinz, Phys. Lett. B 707, 151 (2012)

    Article  ADS  Google Scholar 

  91. H Song, F Meng, X Xin and Y-X Liu, arXiv:1310.3462[nucl-th]

  92. CMS Collaboration: S Chatrchyan et al, arXiv:1312.1845 [nucl-ex]

  93. U Heinz, private communication

  94. U W Heinz, J. Phys. Conf. Ser. 455, 012044 (2013) [94a] Shen et al [54] showed that with an assumed η/s(T) as input, the elliptic flow is sensitive to the initialization of the shear stress tensor at the LHC.

  95. CMS Collaboration: S Chatrchyan and et al., Phys. Lett. B 718, 795 (2013)

    Article  ADS  Google Scholar 

  96. ALICE Collaboration: B Abelev and et al., Phys. Lett. B 719, 29 (2013)

    Article  ADS  Google Scholar 

  97. ATLAS Collaboration: G Aad and et al., Phys. Lett. B 725, 60 (2013)

    Article  ADS  Google Scholar 

  98. K Dusling and R Venugopalan, Phys. Rev. D 87, 094034 (2013) K Dusling and R Venugopalan, Phys. Rev. D 87(5), 054014 (2013)

  99. L McLerran, M Praszalowicz and B Schenke, Nucl. Phys. A 916, 210 (2013)

    Article  ADS  Google Scholar 

  100. A Dumitru, T Lappi and L McLerran, arXiv:1310.7136 [hep-ph]

  101. P Bozek and W Broniowski, Phys. Lett. B 718, 1557 (2013)

    Article  ADS  Google Scholar 

  102. CMS Collaboration: S Chatrchyan and et al., Phys. Lett. B 724, 213 (2013)

  103. ALICE Collaboration: B B Abelev and et al., Phys. Lett. B 726, 164 (2013)

  104. ALICE Collaboration: B B Abelev et al, arXiv:1307.6796 [nucl-ex]

  105. P Huovinen, P F Kolb, U W Heinz, P V Ruuskanen and S A Voloshin, Phys. Lett. B 503, 58 (2001)

    Article  ADS  Google Scholar 

  106. P Bozek, Phys. Rev. C 85, 014911 (2012) P Bozek and W Broniowski, Phys. Rev. C 88, 014903 (2013)

  107. P Bozek, W Broniowski and G Torrieri, Phys. Rev. Lett. 111, 172303 (2013)

    Article  ADS  Google Scholar 

  108. A Bzdak, B Schenke, P Tribedy and R Venugopalan, Phys. Rev. C 87, 064906 (2013)

    Article  ADS  Google Scholar 

  109. G-Y Qin and B Müller, arXiv:1306.3439 [nucl-th]

  110. K Werner, M Bleicher, B Guiot, I Karpenko and T Pierog, arXiv:1307.4379 K Werner, B Guiot, I Karpenko and T Pierog, arXiv:1312.1233 [nucl-th]

Download references

Acknowledgements

This work was supported by the new faculty startup funding from Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huichao Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC and LHC. Pramana - J Phys 84, 703–715 (2015). https://doi.org/10.1007/s12043-015-0971-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0971-2

Keywords

PACS Nos

Navigation