Skip to main content
Log in

Probing of incomplete fusion dynamics in \({}^{{14}}\text {N} + {}^{{124}}\text {Sn}\) system and its correlation with various entrance channel effects

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Measurements of excitation functions were done for the evaporation residues populated in \({}^{{14}}\text {N}+{}^{{124}}\text {Sn}\) system at low energy. The present analysis shows the appearance of incomplete fusion by the breakup of non-\(\upalpha \) cluster structured projectile \(^{{14}}\text {N}\) into \(\upalpha + {}^{{10}}\text {B}\). A correlation between the combined effects of total asymmetry and \(\text {Z}_{\mathrm {P}}\text {Z}_{\mathrm {T}}\) has been studied through three new parameters total asymmetry (\(S_{{ TAS}}\)), Coulomb asymmetry parameters; \(Z_{P} Z_{T} /S_{{ TAS}} \) and \(Z_{P} Z_{T} .S_{{ TAS}} \). These new parameters were found more sensitive and effective to encounter the combined effects of coulomb interactions and entire asymmetry effect of the system on incomplete fusion dynamics. The complete fusion and total fusion cross-sections of two systems \({}^{{14}}\text {N}+{}^{{124}}\text {Sn}\) and \({}^{{16}}\text {O}+{}^{124}\text {Sn}\) have been reduced using two different standard reduction procedures, which shows that the incomplete fusion probability for reactions induced by projectile \({}^{{16}}\text {O}\) is generally larger than \({}^{{14}}\text {N}\) induced reactions. The experimental fusion functions are found to be suppressed as compared to universal fusion function for systems \({}^{{14}}\text {N}+{}^{{124}}\text {Sn}\) and \({}^{{16}}\text {O}+{}^{{124}}\text {Sn}\). The different values of suppression factor for projectiles \({}^{{14}}\text {N}\) and \({}^{{16}}\text {O}\) indicate that the probability of \(\upalpha \)-breakup is different for these projectiles. Further, the total fusion functions for systems \({}^{{14}}\text {N}+{}^{{124}}\text {Sn}\) and \({}^{{16}}\text {O}+{}^{{124}}\text {Sn}\) agree well with the universal fusion function. However, the present results clearly show that the shell closure of nuclei also affect the low energy incomplete fusion dynamics along with the structure of projectile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. L.F. Canto, P.R.S. Gomes, R. Donangelo, M. Hussein, Phys. Rep. 424, (2006)

  2. N. Keeley, R. Raabe, N. Alamanos, J.L. Sida, Prog. Part. Nucl. Phys. 59, 579 (2007)

    Article  ADS  Google Scholar 

  3. K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012)

    Article  ADS  Google Scholar 

  4. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  5. M. Dasgupta et al., Phys. Rev. C 70, 024606 (2004)

    Article  ADS  Google Scholar 

  6. P.R.S. Gomes et al., Phys. Lett. B 601, 20 (2004)

    Article  ADS  Google Scholar 

  7. J.M.B. Shorto et al., Phys. Lett. B 678, 77 (2009)

    Article  ADS  Google Scholar 

  8. D. Singh, R. Ali, M.A. Ansari, M.H. Rashid, R. Guin, S.K. Das, Phys. Rev. C 79, 054601 (2009)

    Article  ADS  Google Scholar 

  9. B.S. Tomar, A. Goswami, G.K. Gubbi, A.V.R. Reddy, S.B. Manohar, B. John, S.K. Katraria, Phys. Rev. C 58, 3478 (1998)

    Article  ADS  Google Scholar 

  10. D. Singh, M.A. Ansari, R. Ali, N.P.M. Sathik, B.S. Tomar, M. Ismail, J. Phys. Soc. Jpn. 82, 114201 (2013)

    Article  ADS  Google Scholar 

  11. D. Singh et al., Pramana J. Phys. 82, 683 (2014)

    Article  ADS  Google Scholar 

  12. H. Morgenstern, W. Bohne, W. Galster, K. Grabisch, A. Kyanowski, Phy. Rev. Lett. 52, 1104 (1984)

    Article  ADS  Google Scholar 

  13. M. Gull et al., Phys. Rev. C 98, 034603 (2018)

    Article  ADS  Google Scholar 

  14. H. Kumar et al., Eur. Phys. J. A 54, 47 (2018)

    Article  ADS  Google Scholar 

  15. D. Singh et al., Nucl. Phys. A 981, 75 (2019)

    Article  ADS  Google Scholar 

  16. J. Wilczynski, K. Siwek-Wilczynska, J. Van Driel, S. Gonggrijp, D.C.J.M. Hageman, R.V.F. Janssens, J. Lukasiak, R.H. Siemssen, S.Y. Van der Werf, Nucl. Phys. A 373, 109 (1982)

    Article  ADS  Google Scholar 

  17. T. Udagawa, T. Tamura, Phys. Rev. Lett. 45, 1311 (1980)

    Article  ADS  Google Scholar 

  18. J.P. Bondrof, J.N. De, G. Fai, A.O.T. Karvinen, B. Jakobsson, J. Randrup, Nucl. Phys. A 333, 285 (1980)

    Article  ADS  Google Scholar 

  19. R. Weiner, M. Westrom, Nucl. Phys. A 286, 282 (1977)

    Article  ADS  Google Scholar 

  20. M. Blann, Phys. Rev. C 23, 205 (1981)

    Article  ADS  Google Scholar 

  21. D.H.E. Gross, J. Wilczynski, Phys. Lett. B 67, 1 (1977)

    Article  ADS  Google Scholar 

  22. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998)

    Article  ADS  Google Scholar 

  23. C.H. Dasso, S. Landowne, A. Winther, Nucl. Phys. A 405, 381 (1983)

    Article  ADS  Google Scholar 

  24. N. Takigawa, M. Kuratani, H. Sagawa, Phys. Rev. C 47, R2470 (1993)

    Article  ADS  Google Scholar 

  25. L.F. Canto et al., Nucl. Phys. A 821, 51 (2009)

    Article  ADS  Google Scholar 

  26. L.F. Canto et al., J. Phys. G Nucl. Part. Phys. 36, 015109 (2009)

    Article  ADS  Google Scholar 

  27. R. Kumar et al., Phys. Rev. C 96, 054614 (2017)

    Article  ADS  Google Scholar 

  28. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  29. F. Puhlhofer, Nucl. Phys. A 280, 267 (1977)

    Article  ADS  Google Scholar 

  30. The Stopping and Range of Ions in Matter (SRIM-2008.04). http://www.srim.org/SRIM/SRIMLEGL.htm

  31. B.P.A. Kumar, E.T. Subramaniam, K. Singh, R.K. Bhowmik, DAE-BRNS Nucl. Phys. Symp., Kolkata (2001). http://www.iuac.res.in/NIAS/

  32. S.Y.F Chu, L.P. Ekstrom, R.B. Firestone, The Lund/LBNL Nuclear Data Search (LBNL, Berkeley, USA, Version 2.0 (1999). http://nucleardata.nuclear.lu.se/toi/index.asp

  33. National Nuclear Data Centre, Brookhaven National Laboratory. https://www.nndc.bnl.gov/chart/chartNuc.jsp

  34. M.A. Ansari, R.K.Y. Singh, M.L. Sehgel, V.K. Mittal, D.K. Avasthi, I.M. Govil, Ann. Nucl. Energy 11, 607 (1984)

    Article  Google Scholar 

  35. R. Bass, Nucl. Phys. A 231, 45 (1974)

    Article  ADS  Google Scholar 

  36. F.D. Becchetti Jr., G.W. Greenlees, Phys. Rev. 182, 1190 (1969)

    Article  ADS  Google Scholar 

  37. P.M. Endt, At. Data Nucl. Data Tables 26, 47 (1981)

    Article  ADS  Google Scholar 

  38. A.H. Wapstra, G. Audi, Nucl. Phys. A 432, 55 (1985)

    Article  ADS  Google Scholar 

  39. J.P. Lestone, Phys. Rev. C 53, 2014 (1996)

    Article  ADS  Google Scholar 

  40. D. Singh et al., Phys. Rev. C 97, 064610 (2018)

    Article  ADS  Google Scholar 

  41. U. Gupta et al., Nucl. Phys. A 811, 77 (2008)

    Article  ADS  Google Scholar 

  42. A. Sharma et al., J. Phys. G Nucl. Part. Phys. 25, 2289 (1999)

    Article  ADS  Google Scholar 

  43. K. Kumar et al., Phys. Rev. C 87, 044608 (2013)

    Article  ADS  Google Scholar 

  44. S. Mukherjee, A. Sharma, S. Sodaye, B.S. Tomar, A. Goswami, S.B. Manohar, Eur. Phys. J. A 12, 199 (2001)

    Article  ADS  Google Scholar 

  45. H. Kumar et al., Nucl. Phys. A 960, 53 (2017)

    Article  ADS  Google Scholar 

  46. V.R. Sharma et al., Phys. Rev. C 89, 024608 (2014)

    Article  ADS  Google Scholar 

  47. A. Yadav et al., Phys. Rev. C 85, 034614 (2012)

    Article  ADS  Google Scholar 

  48. S.A. Tali et al., Nucl. Phys. A 970, 208 (2018)

    Article  ADS  Google Scholar 

  49. A. Yadav et al., Phys. Rev. C 86, 014603 (2012)

    Article  ADS  Google Scholar 

  50. S. Mukherjee, A. Sharma, S. Sodaye, A. Goswami, B.S. Tomar, Int. J. Mod. Phys. E 15, 237 (2006)

    Article  ADS  Google Scholar 

  51. P.R.S. Gomes, J. Lubian, I. Padron, R.M. Anjos, Phys. Rev. C 71, 017601 (2005)

    Article  ADS  Google Scholar 

  52. O. Akyüz, A. Winther, in Proceedings of the International School of Physics Enrico Fermi, Course LXXVII, ed. by R.A. Broglia, R.A. Ricci, C.H. Dasso (North-Holland, Amsterdam, 1981), p. 492

  53. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  54. B. Wang et al., Phys. Rev. C 90, 034612 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director and Convener, AUC, Inter-University Accelerator Centre (IUAC), New Delhi, India, for providing necessary facilities to carry out this work. The authors are also thankful to in-charge of Target Laboratory, Mr. Abhilash S. R. and operational staff of Pelletron Accelerator, IUAC, New Delhi, India, for providing good co-operation and support during the course of this experiment. One of the authors, DS acknowledges encouragement from the Vice-Chancellor of Central University of Jharkhand (CUJ), Ranchi, India. Authors express their thanks to the Head, Department of Physics, CUJ, Ranchi, for their motivation and support during the course of this work. One of the authors AM thanks to the University Grant Commission (UGC) of the Government of India for providing financial assistance in the form of JRF (UGC-NET/JRF/54321). Authors are also thankful to Dr. R. Tripathi, BARC for scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Singh.

Additional information

Communicated by Tohru Motobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, A., Singh, D., Giri, P.K. et al. Probing of incomplete fusion dynamics in \({}^{{14}}\text {N} + {}^{{124}}\text {Sn}\) system and its correlation with various entrance channel effects. Eur. Phys. J. A 56, 131 (2020). https://doi.org/10.1140/epja/s10050-020-00126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00126-8

Navigation