Skip to main content

Advertisement

Log in

Measurements of \(\hbox {ZnWO}_4\) anisotropic response to nuclear recoils for the ADAMO project

  • Special Article – New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Anisotropic scintillators can offer a unique possibility to exploit the so-called directionality approach in order to investigate the presence of those Dark Matter (DM) candidates inducing nuclear recoils. In fact, their use can overcome the difficulty of detecting extremely short nuclear recoil traces. In this paper we present recent measurements performed on the anisotropic response of a \(\hbox {ZnWO}_4\) crystal scintillator to nuclear recoils, in the framework of the ADAMO project. The anisotropic features of the \(\hbox {ZnWO}_4\) crystal scintillators were initially measured with \(\alpha \) particles; those results have been also confirmed by the additional measurements presented here. The experimental nuclear recoil data were obtained by using a neutron generator at ENEA-CASACCIA and neutron detectors to tag the scattered neutrons; in particular, the quenching factor values for nuclear recoils along different crystallographic axes have been determined for three different neutron scattering angles (i.e. nuclear recoils energies). From these measurements, the anisotropy of the light response for nuclear recoils in the \(\hbox {ZnWO}_4\) crystal scintillator has been determined at 5.4 standard deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data generated during this study are contained in this published article.]

Notes

  1. The etching procedure was applied to remove possible surface radioactive contamination of 3 samples of \(\hbox {ZnWO}_4\) scintillators, including the one used in the present study. Two other samples of larger mass, produced from the same crystal boule, were installed in a low-background set-up to investigate radioactive contamination of the material. The measurements are similar to those described in Ref. [15].

  2. The quenching factor Q.F. describes the response of a scintillator to heavy ionizing particles; in details, it is the ratio between the detected energy in the energy scale measured with \(\gamma \) sources to the energy of the heavy ionizing particle.

  3. Many times it is also named \(\alpha /\beta \) ratio.

  4. The typical live time for each data set ranges from 11 to 25 h depending on the scattering angle and crystal axis.

References

  1. R. Bernabei et al., Riv. Nuovo Cim. 26(1), 1 (2003)

  2. R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008)

    Article  ADS  Google Scholar 

  3. R. Bernabei et al., Eur. Phys. J. C 67, 39 (2010)

    Article  ADS  Google Scholar 

  4. R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)

    Article  ADS  Google Scholar 

  5. R. Bernabei et al., Nucl. Phys. At. Energy 19, 307 (2018)

    Article  ADS  Google Scholar 

  6. R. Bernabei et al., Nucl. Phys. At. Energy 20, 317 (2019)

    Article  ADS  Google Scholar 

  7. D.N. Spergel, Phys. Rev. D 37, 1353 (1988)

    Article  ADS  Google Scholar 

  8. P. Belli et al., Nuovo Cim. C 15, 475 (1992)

    ADS  Google Scholar 

  9. R. Bernabei et al., Eur. Phys. J. C 28, 203 (2003)

    Article  ADS  Google Scholar 

  10. F. Cappella et al., Eur. Phys. J. C 73, 2276 (2013)

    Article  ADS  Google Scholar 

  11. F.A. Danevich et al., Nucl. Instrum. Methods A 544, 553 (2005)

    Article  ADS  Google Scholar 

  12. P. Belli et al., Nucl. Instrum. Methods A 626–627, 31 (2011)

    Article  ADS  Google Scholar 

  13. P. Belli et al., J. Phys. G 38, 115107 (2011)

    Article  ADS  Google Scholar 

  14. A.S. Barabash et al., Nucl. Instrum. Methods A 833, 77 (2016)

    Article  ADS  Google Scholar 

  15. P. Belli et al., Nucl. Instrum. Methods A 935, 89 (2019)

    Article  ADS  Google Scholar 

  16. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon, London, 1964)

    Google Scholar 

  17. P.H. Heckmann, Z. Phys. 157, 10 (1959)

    Article  Google Scholar 

  18. P.H. Heckmann et al., Z. Phys. 162, 84 (1961)

    Article  ADS  Google Scholar 

  19. W.F. Kienzle, A. Flammersfeld, Z. Phys. 165, 1 (1961)

    Article  ADS  Google Scholar 

  20. K. Tsukada, S. Kikuchi, Nucl. Instrum. Methods 17, 286 (1962)

    Article  ADS  Google Scholar 

  21. K. Tsukada et al., Nucl. Instrum. Methods 37, 69 (1965)

    Article  ADS  Google Scholar 

  22. F.J. Kratochwill, Z. Phys. 234, 74 (1970)

    Article  ADS  Google Scholar 

  23. F.D. Brooks, D.T. Jones, Nucl. Instrum. Methods 121, 69 (1974)

    Article  ADS  Google Scholar 

  24. V. Caracciolo et al., J. Phys. Conf. Ser. 718, 042011 (2016)

    Article  Google Scholar 

  25. R. Cerulli for DAMA/INR-Kyiv collaboration, talk at IPRD 2019, 14–17 October 2019, Siena, Italy. http://people.roma2.infn.it/dama/pdf/cerulli_IPRD2019.pdf

  26. A. Di Marco for DAMA/INR-Kyiv collaboration, talk at CYGNUS 2019 workshop on directional DM detection, 10–12 July 2019, Rome, Italy. http://people.roma2.infn.it/dama/pdf/cygnus_2019.pdf

  27. V. Caracciolo for DAMA/INR-Kyiv collaboration, Particle Physics at the Silver Jubilee of Lomonosov Conferences, p. 464 (2019)

  28. R. Bernabei et al., EPJ Web Conf. 136, 05002 (2017)

    Article  Google Scholar 

  29. V. Caracciolo for DAMA/INR-Kyiv collaboration, talk at CYGNUS-TPC kick-off meeting: a mini-workshop on directional Dark Matter searches and coherent neutrino scattering, LNF, 7 April 2016, Italy

  30. R. Bernabei et al., AIP Conf. Proc. 1549, 189 (2013)

    Article  ADS  Google Scholar 

  31. V.N. Shlegel et al., JINST 12, C08011 (2017)

    Article  Google Scholar 

  32. V.I. Tretyak, Astropart. Phys. 33, 40 (2010)

    Article  ADS  Google Scholar 

  33. Scionix high flash-point EJ-309 liquid scintillation detectors. https://scionix.nl/wp-content/uploads/2017/07/High-flashpoint-EJ-309-liquid-scintillation-detectors.pdf

  34. Datasheet for ET Enterprises 9821. http://et-enterprises.com/images/ data_sheets/9821B.pdf

  35. Datasheet for Hamamatsu H11934-200. https://www.hamamatsu.com/ resources/pdf/etd/R11265U_H11934_TPMH1336E.pdf

  36. P.G. Bizzeti et al., Nucl. Instrum. Methods A 696, 144 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Mr. A. Bussolotti and Mr. A. Mattei for their valuable technical support and Dr. M. Laubenstein for providing the silicon detector and for fruitful discussions. The group from the Institute for Nuclear Research was supported in part by the program of the National Academy of Sciences of Ukraine “Fundamental research on high-energy physics and nuclear physics (international cooperation)” (Grant no. 0118U005411). D.V.K. and O.G.P. were supported in part by the project “Investigations of rare nuclear processes” of the program of the National Academy of Sciences of Ukraine “Laboratory of young scientists” (Grant no. 0118U002328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernabei.

Additional information

Communicated by Alessia Di Pietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belli, P., Bernabei, R., Cappella, F. et al. Measurements of \(\hbox {ZnWO}_4\) anisotropic response to nuclear recoils for the ADAMO project. Eur. Phys. J. A 56, 83 (2020). https://doi.org/10.1140/epja/s10050-020-00094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00094-z

Navigation