Skip to main content
Log in

Gravitons and pions

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Both gravitons and pions are described by non-linear and non-renormalizable actions at low energies. These are most usefully treated by effective field theory, which is a full quantum field theoretic approach that relies only on the low-energy degrees of freedom and their interactions. The gravitational case is particularly clean because of the masslessness of the graviton and the wide separation of scales. This essay provides an overview of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper describes theoretical research and there is no data associated with this research.]

Notes

  1. I am being somewhat unfair here. There was also a tradition of using dispersive techniques which in principle are fully rigorous. But in practice one had to make various approximations in applying dispersion relations to complex problems, and so also here the reliability was suspect. Dispersive techniques have been married to effective field theory successfully enhancing the power of both.

  2. Of course, effective field theory can also be used as a simplification of a known theory. The same rules apply, but the coefficients in this case can be known from matching to the full theory.

  3. For pedagogic treatments of this I recommend my lecture notes written up in Ref. [6] and those of Veltman [7].

  4. As a sociological observation related to the BJ story at the start of this essay, I would also note that the differences between these variants of nuclear EFTs seemed to bring out the religious fervor of many participants.

  5. The gravitational effective field theory has fewer parameters than the pionic one, because gravitons couple to the energy momentum tensor, which is independently known.

References

  1. J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the standard model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2, 1 (1992)

    MATH  Google Scholar 

  2. J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the standard model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 35 (2014). https://doi.org/10.1017/CBO9780511524370

  3. H.B. Nielsen, N. Brene, Standard model group: survival of the fittest. Nucl. Phys. B 224, 396 (1983). https://doi.org/10.1016/0550-3213(83)90382-6

    Article  ADS  Google Scholar 

  4. R.P. Feynman, Quantum theory of gravitation. Acta Phys. Polon. 24, 697 (1963)

    MathSciNet  Google Scholar 

  5. B.S. DeWitt, Quantum theory of gravity. 2. The manifestly covariant theory. Phys. Rev. 162, 1195 (1967). https://doi.org/10.1103/PhysRev.162.1195

    Article  ADS  MATH  Google Scholar 

  6. J.F. Donoghue, M.M. Ivanov, A. Shkerin, EPFL lectures on general relativity as a quantum field theory. arXiv:1702.00319 [hep-th]

  7. M.J.G. Veltman, Quantum theory of gravitation. Conf. Proc. C 7507281, 265 (1975)

    Google Scholar 

  8. G. Hooft, M.J.G. Veltman, One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  9. M.H. Goroff, A. Sagnotti, Quantum gravity at two loops. Phys. Lett. B 160, 81 (1985). https://doi.org/10.1016/0370-2693(85)91470-4

    Article  ADS  Google Scholar 

  10. J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874 (1994). https://doi.org/10.1103/PhysRevD.50.3874. arXiv:gr-qc/9405057

    Article  ADS  MathSciNet  Google Scholar 

  11. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 67, 084033 (2003) [Erratum: Phys. Rev. D 71, 069903 (2005)] https://doi.org/10.1103/PhysRevD.71.069903. https://doi.org/10.1103/PhysRevD.67.084033. arXiv:hep-th/0211072

  12. I.B. Khriplovich, G.G. Kirilin, Quantum power correction to the Newton law. J. Exp. Theor. Phys. 95(6), 981 (2002)

    Article  ADS  Google Scholar 

  13. I.B. Khriplovich, G.G. Kirilin, Quantum power correction to the Newton law. Zh. Eksp. Teor. Fiz. 122(6), 1139 (2002). https://doi.org/10.1134/1.1537290. arXiv:gr-qc/0207118

    Article  ADS  Google Scholar 

  14. N.E.J. Bjerrum-Bohr, J.F. Donoghue, P. Vanhove, On-shell techniques and universal results in quantum gravity. JHEP 1402, 111 (2014). https://doi.org/10.1007/JHEP02(2014)111. arXiv:1309.0804 [hep-th]

  15. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Planté, P. Vanhove, Bending of light in quantum gravity. Phys. Rev. Lett. 114(6), 061301 (2015). https://doi.org/10.1103/PhysRevLett.114.061301. arXiv:1410.7590 [hep-th]

  16. N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante, P. Vanhove, Light-like scattering in quantum gravity. JHEP 1611, 117 (2016). https://doi.org/10.1007/JHEP11(2016)117. arXiv:1609.07477 [hep-th]

  17. D. Bai, Y. Huang, More on the bending of light in quantum gravity. Phys. Rev. D 95(6), 064045 (2017). https://doi.org/10.1103/PhysRevD.95.064045. arXiv:1612.07629 [hep-th]

  18. H.H. Chi, Graviton bending in quantum gravity from one-loop amplitudes. Phys. Rev. D 99(12), 126008 (2019). https://doi.org/10.1103/PhysRevD.99.126008. arXiv:1903.07944 [hep-th]

  19. J.D. Bjorken, The future of particle physics. Int. J. Mod. Phys. A 16, 483 (2001). https://doi.org/10.1142/S0217751X01003226. arXiv:hep-ph/0006180

    Article  ADS  Google Scholar 

  20. T. Damour, J.F. Donoghue, Constraints on the variability of quark masses from nuclear binding. Phys. Rev. D 78, 014014 (2008). https://doi.org/10.1103/PhysRevD.78.014014. arXiv:0712.2968 [hep-ph]

  21. J.F. Donoghue, The multiverse and particle physics. Annu. Rev. Nucl. Part. Sci. 66, 1 (2016). https://doi.org/10.1146/annurev-nucl-102115-044644. arXiv:1601.05136 [hep-ph]

    Article  ADS  Google Scholar 

  22. E. Epelbaum, U.G. Meissner, W. Gloeckle, Nuclear forces in the chiral limit. Nucl. Phys. A 714, 535 (2003). https://doi.org/10.1016/S0375-9474(02)01393-3. arXiv:nucl-th/0207089

    Article  ADS  Google Scholar 

  23. E. Epelbaum, W. Gloeckle, U.G. Meissner, Improving the convergence of the chiral expansion for nuclear forces. 1. Peripheral phases. Eur. Phys. J. A 19, 125 (2004). https://doi.org/10.1140/epja/i2003-10096-0. arXiv:nucl-th/0304037

    Article  ADS  Google Scholar 

  24. C. Ordonez, L. Ray, U. van Kolck, The Two nucleon potential from chiral Lagrangians. Phys. Rev. C 53, 2086 (1996). https://doi.org/10.1103/PhysRevC.53.2086. arXiv:hep-ph/9511380

    Article  ADS  Google Scholar 

  25. S.R. Beane, M.J. Savage, The quark mass dependence of two nucleon systems. Nucl. Phys. A 717, 91 (2003). https://doi.org/10.1016/S0375-9474(02)01586-5. arXiv:nucl-th/0208021

    Article  ADS  Google Scholar 

  26. J.F. Donoghue, The nuclear central force in the chiral limit. Phys. Rev. C 74, 024002 (2006). https://doi.org/10.1103/PhysRevC.74.024002. arXiv:nucl-th/0603016

  27. J.F. Donoghue, Sigma exchange in the nuclear force and effective field theory. Phys. Lett. B 643, 165 (2006). https://doi.org/10.1016/j.physletb.2006.10.033. arXiv:nucl-th/0602074

    Article  ADS  Google Scholar 

  28. B. Long, U. van Kolck, Renormalization of singular potentials and power counting. Ann. Phys. 323, 1304 (2008). https://doi.org/10.1016/j.aop.2008.01.003. arXiv:0707.4325 [quant-ph]

    Article  ADS  Google Scholar 

  29. H. Leutwyler, Model independent determination of the sigma pole. AIP Conf. Proc. 1030(1), 46 (2008). https://doi.org/10.1063/1.2973552. arXiv:0804.3182 [hep-ph]

  30. R.J. Furnstahl, B.D. Serot, Parameter counting in relativistic mean field models. Nucl. Phys. A 671, 447 (2000). https://doi.org/10.1016/S0375-9474(99)00839-8. arXiv:nucl-th/9911019

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank the organizers and participants at the workshop “The tower of the effective field theories and the emergence of the nuclear phenomena” (January 2017, CEA Saclay) for lively discussions, most particularly U. Meissner, U. van Kolck and P. Vanhove. I also thank J. Bjorken for confirming the story used in the introduction. This work has been supported in part by the National Science Foundation under grant NSF PHY15-20292 and PHY18-20675

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Donoghue.

Additional information

Communicated by T. Duguet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donoghue, J.F. Gravitons and pions. Eur. Phys. J. A 56, 86 (2020). https://doi.org/10.1140/epja/s10050-020-00091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00091-2

Navigation