Skip to main content
Log in

Baryon–baryon interactions at short distances: constituent quark model meets lattice QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The interaction energies between two baryons at short distance in different flavor channels are calculated from the constituent quark model (CQM) and are compared with the recent lattice QCD (LQCD) results for baryon–baryon potentials at short distance. We consider the six-quark system with two strange quarks and focus on the quantum numbers, (Flavor, Spin) = (1, 0), (8, 1), (10, 1), (\(\overline{10}\), 1) and (27, 0). The interaction energy is defined by subtracting out isolated baryon masses and relative kinetic energy of two baryons from the total energy of a compact six-quark state. We introduce interaction energy ratio between different flavors as a useful measure to test the prediction of CQM. We find that the ratios in CQM show good agreement with those in LQCD, which indicates that the short range part of the baryon-baryon interaction can be understood qualitatively in terms of the Pauli principle and spin-dependent color interaction among constituent quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

Notes

  1. The quark mass dependence in \(r_{0ij}\) is introduced to fit the hadrons masses not only with light flavors but also with charm and bottom in the s-wave [13].

  2. More explicitly, \(C_{\mathrm{f}}=\frac{1}{3} (p^2+q^2+3(p+q)+pq)\) with \((p,q)=(0,0)\) for flavor SU(3) singlet, (1,0) for triplet, (1,1) for octet, (2,2) for 27-plet, (3,0) for decuplet, and (0,3) for anti-decuplet. The same holds for \(C_{\mathrm{c}}\) in color SU(3). For the simplest case with \(N=1\), we have \((p,q)=(1,0)\) in both color and flavor, so that \(C_{\mathrm{f}}=C_{\mathrm{c}}=4/3\).

References

  1. T. Hatsuda, Front. Phys. (Beijing) 13, 132105 (2018)

    Article  ADS  Google Scholar 

  2. A. Faessler, Prog. Part. Nucl. Phys. 13, 253 (1985)

    Article  ADS  Google Scholar 

  3. F. Myhrer, J. Wroldsen, Rev. Mod. Phys. 60, 629 (1988)

    Article  ADS  Google Scholar 

  4. M. Oka, K. Shimizu, K. Yazaki, Prog. Theor. Phys. Suppl. 137, 1 (2000)

    Article  ADS  Google Scholar 

  5. D.A. Liberman, Phys. Rev. D 16, 1542 (1977)

    Article  ADS  Google Scholar 

  6. R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977). (Erratum: [Phys. Rev. Lett. 38, 617 (1977)])

    Article  ADS  Google Scholar 

  7. V.G. Neudachin, Y.F. Smirnov, R. Tamagaki, Prog. Theor. Phys. 58, 1072 (1977)

    Article  ADS  Google Scholar 

  8. C.E. DeTar, Phys. Rev. D 17, 323 (1978). (Erratum: [Phys. Rev. D 19, 1028 (1979)])

    Article  ADS  Google Scholar 

  9. M. Oka, K. Yazaki, Phys. Lett. 90B, 41 (1980)

    Article  ADS  Google Scholar 

  10. W. Park, A. Park, S.H. Lee, Phys. Rev. D 93, 074007 (2016). arXiv:1602.05017 [hep-ph]

  11. A. Park, W. Park, S.H. Lee, Phys. Rev. D 98, 034001 (2018). arXiv:1801.10350 [hep-ph]

    Article  ADS  Google Scholar 

  12. T. Inoue [HALQCD Collaboration], PoS INPC 2016, 277 (2016). arXiv:1612.08399 [hep-lat]

  13. A. Park, W. Park, S.H. Lee, Phys. Rev. D 94, 054027 (2016). arXiv:1606.01006 [hep-ph]

    Article  ADS  Google Scholar 

  14. R.K. Bhaduri, L.E. Cohler, Y. Nogami, Nuovo Cim. A 65, 376 (1981). https://doi.org/10.1007/BF02827441

    Article  ADS  Google Scholar 

  15. W. Park, A. Park, S.H. Lee, Phys. Rev. D 92, 014037 (2015). arXiv:1506.01123 [nucl-th]

    Article  ADS  Google Scholar 

  16. T. Inoue et al. [HAL QCD Collaboration], Nucl. Phys. A 881, 28 (2012). arXiv:1112.5926 [hep-lat]

  17. A.T.M. Aerts, P.J.G. Mulders, J.J. de Swart, Phys. Rev. D 17, 260 (1978)

    Article  ADS  Google Scholar 

  18. B. Silvestre-Brac, J. Leandri, Phys. Rev. D 45, 4221 (1992)

    Article  ADS  Google Scholar 

  19. J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963). [Erratum: Rev. Mod. Phys. 37, 326 (1965)]

    Article  ADS  Google Scholar 

  20. K. Sasaki et al. [HAL QCD Collaboration], PTEP 2015, 113B01 (2015). arXiv:1504.01717 [hep-lat]

  21. L.Y. Glozman, D.O. Riska, Phys. Rept. 268, 263 (1996). arXiv:hep-ph/9505422

Download references

Acknowledgements

The work by SHL was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1901-04. This work by AP was supported by the Korea National Research Foundation under the grant number 2018R1D1A1B07043234. The work by T.H. was supported by JSPS Grant-in-Aid for Scientific Research (S), No. 18H05236. We thank H. Nemura for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Houng Lee.

Additional information

Communicated by Carsten Urbach

Appendix A: Beyond s-wave orbital for six-quark state in CQM

Appendix A: Beyond s-wave orbital for six-quark state in CQM

In the main text, we focus only on the s-wave orbitals for the 6-quark systems to extract the interaction \(V_{\mathrm{CQM}}\). When the two baryons overlap with each other, however, there arise four possible orbital states in general. They are characterized by the Young tableau as,

$$\begin{aligned} {[}3]_{O} \times [3]_{O}=[6]_{O} +[51]_{O} +[42]_{O} +[33]_{O} . \end{aligned}$$

Flavor-spin structure associated with each orbital state for color-singlet 6-quark is shown in the first row of Table 8. Then the color-spin matrix element \(\chi (F_{\ell })\) for \(N=6\) (defined in the first equality in Eq. (13)) can be evaluated as summarized in Table 8. The column for \([6]_O \otimes [33]_{FS}\) corresponds to the matrix elements employed in the text.

Table 8 The expectation value of color–spin interaction with respect to the 6-quark systems with mixed orbital symmetry in flavor SU(3) symmetric case. The elements with “P.f.” in the Table correspond to the Pauli forbidden states

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, A., Lee, S.H., Inoue, T. et al. Baryon–baryon interactions at short distances: constituent quark model meets lattice QCD. Eur. Phys. J. A 56, 93 (2020). https://doi.org/10.1140/epja/s10050-020-00078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00078-z

Navigation