Skip to main content
Log in

New perspective of the nuclear structure of \(^{96}\)Ru–\(^{114}\)Ru isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The angular momentum induced rigid tri-axiality observed at higher spins in \(^{110}\)Ru–\(^{114}\)Ru, a unique phenomenon, is studied. It is different from the tri-axiality observed in W, Os and Pt isotopes and in the neutron deficient Xe and Ba isotopes, occurring near shell closures. In Ru isotopes, it is enhanced at the middle of the deformed region at \(N=66\). To understand this, the increasing collectivity in the ground state bands and in the \(\gamma \)-bands, in the full chain of \(^{96}\)Ru–\(^{106}\)Ru and the saturation at \(^{108}\)Ru–\(^{114}\)Ru are studied. The varying odd–even spin staggering displayed in the \(\gamma \)-bands of \(^{108}\)Ru–\(^{112}\)Ru and the formation of odd–even spin doublets and the wobbling motion displayed in \(^{112}\)Ru are illustrated. Microscopic basis of this is also pointed out. Relation with neighboring odd-A isotopes is studied. Comparison is made with the predictions of the Interacting Boson Model-1, as well as of the rigid tri-axial rotor (RTR) model. Distinguishing features of the anharmonic vibrator or U(5), and the \(\gamma \)-soft rotor or O(6) symmetry are illustrated. The different roles of the asymmetry parameter \(\gamma \) for a \(\gamma \)-rigid nucleus and spherical anharmonic vibrator are explicitly demonstrated from the study of the \(\gamma \)-\(\hbox {g }B(E2)\) ratios in Ru, for the first time. Limitation of the RTR model for transitions from the higher spin level is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a theory paper, no data collected or stored.]

References

  1. Brookhaven National Laboratory, Chart of nuclides of National Nuclear Data Center. http://www.nndc.bnl.gov/ENSDF

  2. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975)

    MATH  Google Scholar 

  3. P. Federman, S. Pittel, Phys. Rev. C 20, 820 (1979)

    Article  ADS  Google Scholar 

  4. J.H. Hamilton, A.V. Ramayya, C.F. Maguire, R.B. Piercey et al., J. Phys. G10, L87 (1984)

    Article  Google Scholar 

  5. J.H. Hamilton, Treatise on Heavy-Ion Science, vol. 8 (Plenum Publishing Corporation, New York, 1989), p. 1. (Edited by D. Allan Bromley)

    Google Scholar 

  6. Q.H. Lu et al., Phys. Rev. C 52(3), 1348 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Faessler, W. Greiner, R.K. Sheline, Nucl. Phys. 70, 33 (1965)

    Article  Google Scholar 

  8. J.A. Shanon et al., Phys. Lett. B 336, 136 (1994)

    Article  ADS  Google Scholar 

  9. A.S. Davydov, G.E. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  10. J.H. Hamilton et al., Nucl. Phys. A 834, 28c–31c (2010)

    Article  ADS  Google Scholar 

  11. Y.X. Luo, J.O. Rasmussen, J.H. Hamilton et al., Nucl. Phys. A 919, 67–98 (2013)

    Article  ADS  Google Scholar 

  12. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  13. R.F. Casten, D.D. Warner, Rev. Mod. Phys. 60, 389 (1988)

    Article  ADS  Google Scholar 

  14. P. Van Isacker, G. Puddu, Nucl. Phys. A 348, 125 (1980)

    Article  ADS  Google Scholar 

  15. I. Stefanescu et al., Nucl. Phys. A 789, 125 (2007)

    Article  ADS  Google Scholar 

  16. K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C94, 04 4314 (2016)

    Google Scholar 

  17. H. Abusara, S. Ahmad, S. Othman, Phys. Rev. C95, 05-4302 (2017)

    Google Scholar 

  18. Z. Shi, Z.P. Li, Phys. Rev. C97, 03 4329 (2018)

    Google Scholar 

  19. Z.P. Li, T. Niksic, D. Vretnar, J. Meng, Phys. Rev. C 81, 034316 (2010)

    Article  ADS  Google Scholar 

  20. Q.B. Chen, N. Kaiser, Ulf-G Meißner, J. Meng, Phys. Rev. C97, 064320 (2018)

    ADS  Google Scholar 

  21. J.Q. Faisal, H. Hua, X.Q. Li, Y. Shi, F.R. Xu, H.L. Liu, Y.L. Ye, D.X. Jiang, Phys. Rev. C82, 01 4321 (2010)

    Google Scholar 

  22. H.G. Börner, R.F. Casten, M. Jentschel, P. Mutti, W. Urban, N.V. Zamfir, Phys. Rev. C84, 044326 (2011)

    ADS  Google Scholar 

  23. M. Sugawara, Phys. Rev. C 99, 054323 (2019)

    Article  ADS  Google Scholar 

  24. S.J. Zhu, Y.X. Luo, J.H. Hamilton et al., Int. J. Mod. Phys. E 18, 1717–1739 (2009)

    Article  ADS  Google Scholar 

  25. Y.X. Luo, S.J. Zhu, J.H. Hamilton et al., Int. J. Mod. Phys. E18, 1697 (2009)

    Article  ADS  Google Scholar 

  26. Y.X. Luo, J.O. Rasmussen, J.H. Hamilton et al., Nucl. Phys. A919, 67–98 (2013)

    Article  ADS  Google Scholar 

  27. F. Iachello, Phys. Rev. Lett. 87, 2502 (2001)

    Article  ADS  Google Scholar 

  28. J.B. Gupta, A.K. Kavathekar, R. Sharma, Phys. Scr. 51, 316 (1995)

    Article  ADS  Google Scholar 

  29. J.B. Gupta, A.K. Kavathekar, Phys. Scr. 56, 574 (1997)

    Article  ADS  Google Scholar 

  30. L. Grodzins, Phys. Lett. 2(2), 88 (1962)

    Article  ADS  Google Scholar 

  31. S. Raman, C.W. Nestor Jr., K.H. Bhatt, Phys. Rev. C 37, 805 (1988)

    Article  ADS  Google Scholar 

  32. J.B. Gupta, V. Katoch, Int. J. Mod. Phys. E27(04), 18500337 (2018)

    Google Scholar 

  33. J.B. Gupta, Int. J. Mod. Phys. E27, 18501008 (2018)

    Google Scholar 

  34. B. Pritychenko, M. Birch, B. Singh, M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016)

    Article  ADS  Google Scholar 

  35. H.B. Ding et al., Phys. Rev. C 77, 057302 (2008)

    Article  ADS  Google Scholar 

  36. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)

    Article  ADS  Google Scholar 

  37. K. Kumar, Phys. Rev. C 1, 1 (1970)

    Article  Google Scholar 

  38. J.B. Gupta, Int. J. Mod. Phys. E 27(05), 44 (2018)

    Article  Google Scholar 

  39. N.V. Zamfir, R.F. Casten et al., Phys. Lett. B 260, 265 (1991)

    Article  ADS  Google Scholar 

  40. R.F. Casten, N.V. Zamfir, P. von Brentano, F. Seiffert, W. Lieberz, Phys. Lett. B 265, 9–13 (1991)

    Article  ADS  Google Scholar 

  41. E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C76, 024306 (2007)

    ADS  Google Scholar 

  42. O. Scholten, Computer program package PHINT KVI Internal Report (1979)

  43. J.B. Gupta, K. Kumar, Nucl. Phys. A 705, 40 (2002)

    Article  ADS  Google Scholar 

  44. M. Saxena, J.B. Gupta, Phys. Scr. 90, 085303 (2015)

    Article  ADS  Google Scholar 

  45. J.B. Gupta, J. Phys. G (UK) 28, 2365–2376 (2002)

    Article  ADS  Google Scholar 

  46. J.B. Gupta, S. Sharma, Phys. Scr. 39, 50 (1989)

    Article  ADS  Google Scholar 

  47. J.M. Almond, J.L. Wood, Phys. Lett. B 767, 225 (2017)

    ADS  Google Scholar 

  48. J.L. Wood, A.M. Oros-Peusqends, R. Zabala, J.M. Almond, W.D. Kulp, Phys. Rev. C 70, 024308 (2004)

    Article  ADS  Google Scholar 

  49. E.Y. Yeoh, S.J. Zhu, J.H. Hamilton et al., Phys. Rev. C 83, 054317 (2011)

    Article  ADS  Google Scholar 

  50. R.F. Casten, P. Von Brentano, K. Heyde, P. Van Isacker, J. Jolie, Nucl. Phys. A 439, 289 (1985)

    Article  ADS  Google Scholar 

  51. J.B. Gupta, Phys. Rev. C 87, 064318 (2013)

    Article  ADS  Google Scholar 

  52. K. Kumar, M. Baranger, Nucl. Phys. A 110, 529 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J. B. Gupta appreciates the post-retirement association with Ramjas College, University of Delhi. The work at Vanderbilt University is supported by the U.S. Department of Energy under Grant no. DE-FG02-88ER40407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Gupta.

Additional information

Communicated by M. Caprio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, J.B., Hamilton, J.H. New perspective of the nuclear structure of \(^{96}\)Ru–\(^{114}\)Ru isotopes. Eur. Phys. J. A 56, 14 (2020). https://doi.org/10.1140/epja/s10050-019-00015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00015-9

Navigation