Skip to main content
Log in

Extended quantum diffusion approach to reactions of astrophysical interests

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The quantum diffusion approach is extended to low-energy fusion (capture) reactions of light- and medium-mass nuclei. The dependence of the friction parameter on bombarding energy is taken into account. A simple analytic expression is obtained for the capture probability at extreme sub-barrier energies. The calculated cross-sections are in good agreement with the experimental data. The fusion excitation functions calculated within the quantum diffusion and WKB approaches are compared and presented in the astrophysical S-factor representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The experimental data used in the present study was published in Refs. [7,8,9,10,11,12,13,14,15, 20, 22,23,24, 48, 49].]

References

  1. S. Hofmann, Lec. Notes Phys. 764, 203 (2009)

    Article  ADS  Google Scholar 

  2. Y.T. Oganessian, V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015)

    Article  ADS  Google Scholar 

  3. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  4. L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Rev. Mod. Phys. 596, 1 (2015)

    Google Scholar 

  5. C. Beck, arXiv:1812.08013v1 [nucl-ex] (2019)

  6. V.V. Sargsyan, H. Lenske, G.G. Adamian, N.V. Antonenko, Int. J. Mod. Phys. E 27, 1850063 (2018)

    Article  ADS  Google Scholar 

  7. V.V. Sargsyan, H. Lenske, G.G. Adamian, N.V. Antonenko, Int. J. Mod. Phys. E 27, 1850093 (2018)

    Article  ADS  Google Scholar 

  8. M.G. Mazarakis, W.E. Stephens, Phys. Rev. C 7, 1280 (1973)

    Article  ADS  Google Scholar 

  9. B. Cujec, C.A. Barnes, Nucl. Phys. A 266, 461 (1976)

    Article  ADS  Google Scholar 

  10. P.R. Christensen, Z.E. Switkowski, R.A. Dayras, Nucl. Phys. A 280, 189 (1977)

    Article  ADS  Google Scholar 

  11. G. Hulke, C. Rolfs, H.P. Trautvetter, Z. Physik A 297, 161 (1980)

    Article  ADS  Google Scholar 

  12. S.-C. Wu, C.A. Barnes, Nucl. Phys. A 422, 373 (1984)

    Article  ADS  Google Scholar 

  13. J. Thomas et al., Phys. Rev. C 31, 1980 (1985)

    Article  ADS  Google Scholar 

  14. A. Kuronen, J. Keinonen, P. Tikkanen, Phys. Rev. C 35, 591 (1987)

    Article  ADS  Google Scholar 

  15. M.D. High, B. Cujec, Nucl. Phys. A 282, 181 (1997)

    Article  ADS  Google Scholar 

  16. E.F. Aguilera et al., Phys. Rev. C 73, 064601 (2006)

    Article  ADS  Google Scholar 

  17. M. Assuncao, P. Descouvemont, Phys. Lett. B 723, 355 (2006)

    Article  ADS  Google Scholar 

  18. L.R. Gasques et al., Phys. Rev. C 76, 035802 (2007)

    Article  ADS  Google Scholar 

  19. L.R. Gasques et al., Phys. Rev. C 76, 045802 (2007)

    Article  ADS  Google Scholar 

  20. A. Diaz-Torres, L.R. Gasques, M. Wiescher, Phys. Lett. B 652, 255 (2007)

    Article  ADS  Google Scholar 

  21. C.L. Jiang et al., Phys. Rev. C 78, 017601 (2008)

    Article  ADS  Google Scholar 

  22. M. Notani et al., Phys. Rev. C 85, 014607 (2012)

    Article  ADS  Google Scholar 

  23. X. Fang et al., Phys. Rev. C 96, 045804 (2017)

    Article  ADS  Google Scholar 

  24. C.L. Jiang et al., Phys. Rev. C 97, 012801(R) (2018)

    Article  ADS  Google Scholar 

  25. G. Montagnoli et al., Phys. Rev. Lett. 97, 024610 (2018)

    Google Scholar 

  26. A. Tumino et al., Nature 557, 687 (2018)

    Article  ADS  Google Scholar 

  27. A. Diaz-Torres, M. Wiescher, Phys. Rev. C 97, 055802 (2018)

    Article  ADS  Google Scholar 

  28. L.H. Chien, D.T. Khoa, D.C. Cuong, N.H. Phuc, Phys. Rev. C 97, 064604 (2018)

    Article  ADS  Google Scholar 

  29. J. Zickefoose et al., Phys. Rev. C 97, 065806 (2018)

    Article  ADS  Google Scholar 

  30. V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 80, 034606 (2009)

    Article  ADS  Google Scholar 

  31. V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 80, 047603 (2009)

    Article  ADS  Google Scholar 

  32. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, Eur. Phys. J. A 45, 125 (2010)

    Article  ADS  Google Scholar 

  33. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Eur. Phys. J. A 47, 38 (2011)

    Article  ADS  Google Scholar 

  34. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, J. Phys. Conf. Ser. 282, 012001 (2011)

    Article  Google Scholar 

  35. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, EPJ Web Conf. 17, 04003 (2011)

    Article  Google Scholar 

  36. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Phys. C 84, 064614 (2011)

    ADS  Google Scholar 

  37. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Rev. C 85, 024616 (2012)

    Article  ADS  Google Scholar 

  38. V.V. Sargsyan, Z. Kanokov, G.G. Adamian, N.V. Antonenko, Phys. Part. Nucl. 47, 157 (2016)

    Article  Google Scholar 

  39. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, H.Q. Zhang, Phys. Rev. C 85, 069903 (2012)

    Article  ADS  Google Scholar 

  40. V.V. Dodonov, V.I. Man’ko, Trudy Fiz. Inst. AN 167, 7 (1986)

    Google Scholar 

  41. H. Hofmann, Phys. Rep. 284, 137 (1997)

    Article  ADS  Google Scholar 

  42. C. Rummel, H. Hofmann, Nucl. Phys. A 727, 24 (2003)

    Article  ADS  Google Scholar 

  43. G.G. Adamian, N.V. Antonenko, Z. Kanokov, V.V. Sargsyan, Teor. Mat. Fiz. 145, 87 (2005). (Theor. Math. Phys. 145, 1443 (2006))

    Article  Google Scholar 

  44. Z. Kanokov, Y.V. Palchikov, G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. E 71, 016121–016122 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  45. G.G. Adamian et al., Int. J. Mod. Phys. E 5, 191 (1996)

    Article  ADS  Google Scholar 

  46. S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  47. D.H.E. Gross, H. Kalinowski, Phys. Rep. 45, 175 (1978)

    Article  ADS  Google Scholar 

  48. H.A. Weidenmüller, Progr. Part. Nucl. Phys. 3, 49–128 (1980)

    Article  ADS  Google Scholar 

  49. G. Montagnoli et al., Phys. Rev. C 87, 014611 (2013)

    Article  ADS  Google Scholar 

  50. A.M. Stefanini et al., Phys. Rev. C 78, 044607 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

V.V.S. acknowledges the Alexander von Humboldt–Stiftung (Bonn). This work was partially supported by Russian Foundation for Basic Research (Moscow, Grant no. 17-52-12015), DFG (Bonn, contract Le439/16), and Tomsk Polytechnic University Competitiveness Enhancement Program Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Adamian.

Additional information

Communicated by F. Gulminelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, V.V., Adamian, G.G., Antonenko, N.V. et al. Extended quantum diffusion approach to reactions of astrophysical interests. Eur. Phys. J. A 56, 19 (2020). https://doi.org/10.1140/epja/s10050-019-00009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00009-7

Navigation