Skip to main content
Log in

Overlap of electron shells in \(\beta \) and double-\(\beta \) decays

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(\beta \) and double-\(\beta \) decay channels, which are not accompanied by excitation of the electron shells, are suppressed due to the nonorthogonality of the electron wave functions of the parent and daughter atoms. The effect is sensitive to the contribution of the outer electron shells. Since valence electrons participate in chemical bonding and collectivize in metals, the decay rates of the unstable nuclides are modified when they are embedded in a host material. Core electrons are less affected by the environment, and their overlap amplitudes are more stable. The suppression effect is estimated for \( \beta ^- \) decay of \(^{87}\)Kr, electron capture in \(^{163}\)Ho, and \(2\beta ^-\) decays of \(^{76}\)Ge, \(^{100}\)Mo, \(^{130}\)Te, and \(^{136}\)Xe. The overlap amplitude of the electron shells enters the relationship between the half-life of neutrinoless \(2\beta \) decay and the effective electron neutrino Majorana mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All codes used in this :manuscript for calculations are available upon request by contacting with the corresponding author.]

Notes

  1. https://www.maplesoft.com/.

References

  1. L. Gastaldo, K. Blaum, A. Doerr et al., The electron capture \(^{163}\)Ho experiment ECHo: an overview. J. Low Temp. Phys. 176, 876 (2014)

    Article  ADS  Google Scholar 

  2. C. Hassel, K. Blaum, T. Day Goodacre et al., Recent results for the ECHo experiment. J. Low. Temp. Phys 184, 910 (2016)

    Article  ADS  Google Scholar 

  3. M. Agostini et al., [GERDA Collaboration], Improved limit on neutrinoless double-\(\beta \) decay of \(^{76}\)Ge from GERDA Phase II. Phys. Rev. Lett. 120, 132503 (2018)

  4. K. Alfonso et al., [CUORE Collaboration], Search for neutrinoless double-beta decay of \(^{130}\)Te with CUORE-0. Phys. Rev. Lett. 115, 102502 (2015)

  5. A. Gando et al. [KamLAND-Zen Collaboration], Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117, 082503 (2016) Addendum: [Phys. Rev. Lett. 117, 109903 (2016)]

  6. R. Arnold et al., [NEMO-3 Collaboration], Results of the search for neutrinoless double-\(\beta \) decay in \(^{100}\)Mo with the NEMO-3 experiment. Phys. Rev. D 92, 072011 (2015)

  7. E. Armengaud et al., The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects, arXiv:1909.02994 [physics.ins-det]

  8. V. Alenkov et al., First Results from the AMoRE-Pilot neutrinoless double beta decay experiment. Eur. Phys. J. C 79, 791 (2019)

    Article  ADS  Google Scholar 

  9. L. Gastaldo, F. Šimkovic, Electron capture in \(^{163}\)Ho, overlap plus exchange corrections and neutrino mass. J. Phys. G 42, 015108 (2015)

    Article  ADS  Google Scholar 

  10. A. Faessler, L. Gastaldo, F. Šimkovic, Neutrino mass, electron capture and the shake-off contributions. Phys. Rev. C 95, 045502 (2017)

    Article  ADS  Google Scholar 

  11. M. Braß, C. Enss, L. Gastaldo, R.J. Green, M.W. Haverkort, Ab initio calculation of the calorimetric electron-capture spectrum of \(^{163}\)Ho: Intra-atomic decay into bound states. Phys. Rev. C 97, 054620 (2018)

    Article  ADS  Google Scholar 

  12. F. Šimkovic, ChC Moustakidis, L. Pacearescu, Proton–neutron pairing in the deformed BCS approach. Phys. Rev. C 68, 054319 (2003)

    Article  ADS  Google Scholar 

  13. L.D. Landau, E.M. Lifschitz, Quantum Mechanics. Non-relativistic Theory, 3-rd ed. (Nauka, Moscow, 1974)

  14. F.B. Larkins, Semiempirical Auger-electron energies for elements \(10 \le Z \le 100\). At. Data Nucl. Data Tables 20, 311–387 (1977)

    Article  ADS  Google Scholar 

  15. M.I. Krivoruchenko, F. Šimkovic, D. Frekers, A. Frekers, Resonance enhancement of neutrinoless double electron capture. Nucl. Phys. A 859, 140 (2011)

    Article  ADS  Google Scholar 

  16. N. Aghanim et al. (Planck Collaboration), Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 (2018)

  17. S.S. Ratkevich, A.M. Gangapshev, YuM Gavrilyuk et al., Comparative study of the double-K-shell-vacancy production in single- and double-electron-capture decay. Phys. Rev. C 96, 065502 (2017)

    Article  ADS  Google Scholar 

  18. E. Aprile et al., [XENON Collaboration], Observation of two-neutrino double electron capture in \(^{124}\)Xe with XENON1T. Nature 568, 532 (2019)

    Article  ADS  Google Scholar 

  19. S. Kovalenko, M.I. Krivoruchenko, F. Šimkovic, Neutrino propagation in nuclear medium and neutrinoless double-\(\beta \) decay. Phys. Rev. Lett. 112, 142503 (2014)

    Article  ADS  Google Scholar 

  20. R.N. Mohapatra, New contributions to neutrinoless double-beta decay in supersymmetric theories. Phys. Rev. D 34, 3457 (1986)

    Article  ADS  Google Scholar 

  21. J.D. Vergados, Neutrinoless double beta-decay without majorana neutrinos in supersymmetric theories. Phys. Lett. B 184, 55 (1987)

    Article  ADS  Google Scholar 

  22. G. Angloher et al., New limits on double electron capture of \(^{40}\)Ca and \(^{180}\)W. J. Phys. G 43, 095202 (2016)

    Article  ADS  Google Scholar 

  23. S. Eliseev, C. Roux, K. Blaum et al., Resonant enhancement of neutrinoless double-electron capture in Gd-152. Phys. Rev. Lett. 106, 052504 (2011)

    Article  ADS  Google Scholar 

  24. F. Šimkovic, A. Faessler, V. Rodin, P. Vogel, J. Engel, Anatomy of nuclear matrix elements for neutrinoless double-beta decay. Phys. Rev. C 77, 045503 (2008)

    Article  ADS  Google Scholar 

  25. J.T. Suhonen, Value of the axial-vector coupling strength in \(\beta \) and \(\beta \beta \) decays: a review. Front. Phys. 5, 55 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to F. Danevich for the discussion of experimental limitations in the \(\beta \) spectrum measurements. This work is partially supported by RFBR Grant No. 18-02-00733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Krivoruchenko.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivoruchenko, M.I., Tyrin, K.S. Overlap of electron shells in \(\beta \) and double-\(\beta \) decays. Eur. Phys. J. A 56, 16 (2020). https://doi.org/10.1140/epja/s10050-019-00003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00003-z

Navigation