Skip to main content
Log in

MITA: A Multilayer Ionization-chamber Telescope Array for low-energy reactions with exotic nuclei

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We report on the development of a new, portable detector array for charged particles with a low detection threshold to study the reaction mechanisms of exotic nuclear systems at energies around the Coulomb barrier. In order to identify both light and heavy particles simultaneously, the array consists of ten units of \( \Delta E\)-\( E_{\mathrm{R}}\) telescopes, where each one is made up of four detection layers: one ionization chamber, one 40 (or 60)μm double-sided silicon strip detector and two quadrant silicon detectors with thicknesses of 300μm and 1000 (or 1500)μm, respectively. The frame of the ionization chamber is innovatively designed with printed circuit boards, thus the mass of each telescopic unit was reduced significantly which eases transport and installation requirements to different radioactive ion beam lines around the globe. The commissioning experiments focused on elucidating several reaction mechanisms encountered in the 17F + 58Ni and 17F + 208Pb systems, and we demonstrated that the array has a sufficient capability to enable charged particle identification over a large range of Z. Light particles like p, d, \( \alpha\) as well as heavy ions like 16O and 17F can be clearly distinguished. Considering these properties, this newly developed array enables in-depth investigation of the novel reaction mechanisms which are manifested in the collisions of exotic nuclei with differing isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata, Prog. Part. Nucl. Phys. 35, 505 (1995)

    ADS  Google Scholar 

  2. I. Tanihata, Prog. Theor. Phys. Suppl. 146, 1 (2002)

    ADS  Google Scholar 

  3. A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000)

    ADS  Google Scholar 

  4. C. Signorini, Nucl. Phys. A 693, 190 (2001)

    ADS  Google Scholar 

  5. Y. Blumenfeld et al., Nucl. Instrum. Methods Phys. Res. A 421, 471 (1999)

    ADS  Google Scholar 

  6. E. Pollacco et al., Eur. Phys. J. A 25, 287 (2005)

    Google Scholar 

  7. G. Marquinez-Duran et al., Nucl. Instrum. Methods Phys. Res. A 755, 69 (2014)

    ADS  Google Scholar 

  8. M. Romoli et al., IEEE Trans. Nucl. Sci. 52, 1860 (2005)

    ADS  Google Scholar 

  9. M. Romoli et al., Nucl. Instrum. Methods Phys. Res. A 266, 4637 (2008)

    Google Scholar 

  10. E. Strano et al., Nucl. Instrum. Methods Phys. Res. B 317, 657 (2013)

    ADS  Google Scholar 

  11. D. Pierroutsakou et al., Nucl. Instrum. Methods Phys. Res. A 834, 46 (2016)

    ADS  Google Scholar 

  12. J.Pouthas et al., Nucl. Instrum. Methods Phys. Res. A 357, 418 (1995)

    ADS  Google Scholar 

  13. K. Kwiatkowski et al., Nucl. Instrum. Methods Phys. Res. A 360, 571 (1995)

    ADS  Google Scholar 

  14. I. Iori et al., Nucl. Instrum. Methods Phys. Res. A 325, 458 (1993)

    ADS  Google Scholar 

  15. N.R. Ma et al., Chin. Phys. C 40, 116004 (2016)

    ADS  Google Scholar 

  16. Z. Sun et al., Nucl. Instrum. Methods Phys. Res. A 503, 496 (2003)

    ADS  Google Scholar 

  17. J.J. He et al., Nucl. Instrum. Methods Phys. Res. A 680, 43 (2012)

    ADS  Google Scholar 

  18. S. Kubono et al., Eur. Phys. J. A 13, 217 (2002)

    ADS  Google Scholar 

  19. Y. Yanagisawa et al., Nucl. Instrum. Methods Phys. Res. A 539, 74 (2005)

    ADS  Google Scholar 

  20. X.X. Xu et al., Nucl. Sci. Tech. 29, 73 (2018)

    Google Scholar 

  21. L.J. Sun et al., At. Energy Sci. Technol. 49, 336 (2015)

    Google Scholar 

  22. P.F. Bao et al., Chin. Phys. C 38, 126001 (2014)

    ADS  Google Scholar 

  23. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    ADS  Google Scholar 

  24. H. Yamaguchi et al., Nucl. Instrum. Methods Phys. Res. A 589, 150 (2008)

    ADS  Google Scholar 

  25. H. Kumagai et al., Nucl. Instrum. Methods Phys. Res. A 470, 562 (2001)

    ADS  Google Scholar 

  26. L.J. Sun et al., Nucl. Instrum. Methods Phys. Res. A 804, 1 (2015)

    ADS  Google Scholar 

  27. L.J. Sun et al., Phys. Rev. C 95, 014314 (2017)

    ADS  Google Scholar 

  28. X.X. Xu et al., Phys. Lett. B 766, 312 (2017)

    ADS  Google Scholar 

  29. L. Yang et al., Phys. Rev. C 95, 034616 (2017)

    ADS  Google Scholar 

  30. L. Yang et al., Phys. Rev. C 96, 044615 (2017)

    ADS  Google Scholar 

  31. L. Yang et al., Phys. Rev. Lett. 119, 042503 (2017)

    ADS  Google Scholar 

  32. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    ADS  Google Scholar 

  33. Y.Y. Yang et al., Nucl. Instrum. Methods Phys. Res. A 701, 1 (2013)

    ADS  Google Scholar 

  34. G.X. Zhang et al., Nucl. Instrum. Methods Phys. Res. A 846, 23 (2017)

    ADS  Google Scholar 

  35. G.L. Zhang et al., Nucl. Sci. Tech. 28, 104 (2017)

    Google Scholar 

  36. G.L. Zhang et al., Phys. Rev. C 97, 044618 (2018)

    ADS  Google Scholar 

  37. R.S.S. Fernbach, T.B. Taylor, Phys. Rev. 75, 1352 (1949)

    ADS  Google Scholar 

  38. M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010)

    ADS  Google Scholar 

  39. J. Lei, A.M. Moro, Phys. Rev. Lett. 122, 042503 (2019)

    ADS  Google Scholar 

  40. E.F. Aguilera et al., Phys. Rev. Lett. 107, 092701 (2011)

    ADS  Google Scholar 

  41. A. Gavron, Phys. Rev. C 21, 230 (1980)

    ADS  Google Scholar 

  42. P. Amador-Valenzuela et al., J. Phys. Conf. Ser. 492, 012003 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yang.

Additional information

Communicated by T. Motobayashi

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Part of the data generated during this study are contained in this published article. All data will be published after the data analysis is finished.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N.R., Yang, L., Lin, C.J. et al. MITA: A Multilayer Ionization-chamber Telescope Array for low-energy reactions with exotic nuclei. Eur. Phys. J. A 55, 87 (2019). https://doi.org/10.1140/epja/i2019-12765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12765-7

Navigation