Skip to main content
Log in

Photonuclear reactions with charged particles detection for nuclear astrophysics studies

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Measurements of (\(\gamma ,p\)) and (\(\gamma ,\alpha \)) photonuclear reaction cross sections are relevant for several nucleosynthesis scenarios, from the primordial Big Bang, to stellar burning, and the p-process. Studies of photonuclear reaction cross sections marked a steady development in the last 20 years with the advent of mono-energetic \(\gamma \)-ray beam facilities and improved detection methods. Charged-particle detection from photon-induced reactions in solid targets is mainly achieved with silicon-strip detectors, while time projection chambers were developed for measurements with active gas targets. This review tracks the evolution of charged-particle detection methods and highlights recent \(^{7}\)Li(\(\gamma ,t\))\(^{4}\)He and \(^{16}\)O(\(\gamma ,\alpha \))\(^{12}\)C cross section measurements using mono-energetic \(\gamma \)-ray beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: The datasets analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. K. Strauch, Recent studies of photonuclear reactions. Annu. Rev. Nucl. Sci. 2(1), 105–128 (1953). https://doi.org/10.1146/annurev.ns.02.120153.000541

    Article  ADS  Google Scholar 

  2. A. Zilges, D.L. Balabanski, J. Isaak, N. Pietralla, Photonuclear reactions—from basic research to applications. Prog. Part. Nucl. Phys. 122, 103903 (2022). https://doi.org/10.1016/j.ppnp.2021.103903

    Article  Google Scholar 

  3. C.R. Howell, M.W. Ahmed, A. Afanasev, D. Alesini, J.R.M. Annand, A. Aprahamian, D.L. Balabanski, S.V. Benson, A. Bernstein, C.R. Brune, J. Byrd, B.E. Carlsten, A.E. Champagne, S. Chattopadhyay, D. Davis, E.J. Downie, J.M. Durham, G. Feldman, H. Gao, C.G.R. Geddes, H.W. Grießhammer, R. Hajima, H. Hao, D. Hornidge, J. Isaak, R.V.F. Janssens, D.P. Kendellen, M.A. Kovash, P.P. Martel, U.-G. Meißner, R. Miskimen, B. Pasquini, D.R. Phillips, N. Pietralla, D. Savran, M.R. Schindler, M.H. Sikora, W.M. Snow, R.P. Springer, C. Sun, C. Tang, B. Tiburzi, A.P. Tonchev, W. Tornow, C.A. Ur, D. Wang, H.R. Weller, V. Werner, Y.K. Wu, J. Yan, Z. Zhao, A. Zilges, F. Zomer, International workshop on next generation gamma-ray source. J. Phys. G Nucl. Part. Phys. 49(1), 010502 (2021). https://doi.org/10.1088/1361-6471/ac2827

    Article  Google Scholar 

  4. H.R. Weller, M.W. Ahmed, H. Gao, W. Tornow, Y.K. Wu, M. Gai, R. Miskimen, Research opportunities at the upgraded HI\(\gamma \)S facility. Prog. Part. Nucl. Phys. 62, 257–303 (2009). https://doi.org/10.1016/j.ppnp.2008.07.001

    Article  ADS  Google Scholar 

  5. G. Baur, C.A. Bertulani, H. Rebel, Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest. Nucl. Phys. A 458(1), 188–204 (1986). https://doi.org/10.1016/0375-9474(86)90290-3

    Article  ADS  Google Scholar 

  6. G. Junghans, K. Bangert, U.E.P. Berg, R. Stock, K. Wienhard, The photodisintegration of \(^6\)Li and \(^7\)Li. Z. Physik A 291(4), 353–365 (1979). https://doi.org/10.1007/BF01408386

    Article  ADS  Google Scholar 

  7. T. Shima, S. Naito, Y. Nagai, T. Baba, K. Tamura, T. Takahashi, T. Kii, H. Ohgaki, H. Toyokawa, Simultaneous measurement of the photodisintegration of \(^{4}\rm He \) in the giant dipole resonance region. Phys. Rev. C 72, 044004 (2005). https://doi.org/10.1103/PhysRevC.72.044004

    Article  ADS  Google Scholar 

  8. S. Naito, Y. Nagai, T. Shima, H. Makii, K. Mishima, K. Tamura, H. Toyokawa, H. Ohgaki, J. Golak, R. Skibi ński, H. Witała, W. Glöckle, A. Nogga, H. Kamada, New data for total \(^{3}\)He(\(\gamma ,p\))d and \(^{3}\)He(\(\gamma , pp\))n cross sections compared to current theory. Phys. Rev. C 73, 034003 (2006). https://doi.org/10.1103/PhysRevC.73.034003

    Article  ADS  Google Scholar 

  9. C. Ugalde, B. DiGiovine, D. Henderson, R.J. Holt, K.E. Rehm, A. Sonnenschein, A. Robinson, R. Raut, G. Rusev, A.P. Tonchev, First determination of an astrophysical cross section with a bubble chamber: the \(^{15}\)N(\(\alpha , \gamma \))\(^{19}\)F reaction. Phys. Lett. B 719(1), 74–77 (2013). https://doi.org/10.1016/j.physletb.2012.12.068

    Article  ADS  Google Scholar 

  10. R.P. Taleyarkhan, B. Archambault, A. Sansone, T.F. Grimes, A. Hagen, Neutron spectroscopy & H*10 dosimetry with tensioned metastable fluid detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 959, 163278 (2020). https://doi.org/10.1016/j.nima.2019.163278

    Article  Google Scholar 

  11. https://www.eli-np.ro/rd2_second.php

  12. O. Tesileanu, M. Gai, A. Anzalone, C. Balan, J.S. Bihalowicz, M. Cwiok, W. Dominik, S. Gales, D.G. Ghita, Z. Janas, D.P. Kendellen, M.L. Cognata, C. Matei, K. Mikszuta, C. Petcu, M. Pfutzner, T. Matulewicz, C. Mazzocchi, C. Spitaleri, Charged particle detection at ELI-NP. Rom. Rep. Phys. 68, 699 (2016)

    Google Scholar 

  13. H.Y. Lan, Y. Xu, W. Luo, D.L. Balabanski, S. Goriely, M. La Cognata, C. Matei, A. Anzalone, S. Chesnevskaya, G.L. Guardo et al., Determination of the photodisintegration reaction rates involving charged particles: systematic calculations and proposed measurements based on the facility for extreme light infrastructure-nuclear physics. Phys. Rev. C 98(5), 054601 (2018). https://doi.org/10.1103/PhysRevC.98.054601

    Article  ADS  Google Scholar 

  14. H.Y. Lan, W. Luo, Y. Xu, D.L. Balabanski, G.L. Guardo, M. La Cognata, D. Lattuada, C. Matei, R.G. Pizzone, T. Rauscher, J.L. Zhou, Feasibility of studying astrophysically important charged-particle emission with the variable energy \(\gamma \)-ray system at the extreme light infrastructure-nuclear physics facility. Phys. Rev. C 105, 044618 (2022). https://doi.org/10.1103/PhysRevC.105.044618

    Article  ADS  Google Scholar 

  15. H.R. Weller, M.W. Ahmed, H. Gao, W. Tornow, Y.K. Wu, M. Gai, R. Miskimen, Forward photodisintegration of the deuteron at 10.74 MeV photon energy. Few Body Syst. 1, 135–141 (1986). https://doi.org/10.1007/BF01077004

    Article  Google Scholar 

  16. V.P. Likhachev, M.N. Martins, M.T.F. da Cruz, J.D.T. Arruda-Neto, L.P. Geraldo, R. Semmler, J.F. Dias, Triton angular distributions from the \({}^{7}\)Li \((\gamma , t)\alpha \) reaction near threshold. Phys. Rev. C 59, 525–527 (1999). https://doi.org/10.1103/PhysRevC.59.525

    Article  ADS  Google Scholar 

  17. J. Kemmer, Fabrication of low noise silicon radiation detectors by the planar process. Nucl. Instrum. Methods 169(3), 499–502 (1980). https://doi.org/10.1016/0029-554X(80)90948-9

    Article  ADS  Google Scholar 

  18. T. Davinson, W. Bradfield-Smith, S. Cherubini, A. DiPietro, W. Galster, A.M. Laird, P. Leleux, A. Ninane, A.N. Ostrowski, A.C. Shotter, J. Vervier, P.J. Woods, Louvain–Edinburgh detector array (LEDA): a silicon detector array for use with radioactive nuclear beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 454(2), 350–358 (2000). https://doi.org/10.1016/S0168-9002(00)00479-4

    Article  ADS  Google Scholar 

  19. D.W. Bardayan, J.C. Blackmon, C.R. Brune, A.E. Champagne, A.A. Chen, J.M. Cox, T. Davinson, V.Y. Hansper, M.A. Hofstee, B.A. Johnson, R.L. Kozub, Z. Ma, P.D. Parker, D.E. Pierce, M.T. Rabban, A.C. Shotter, M.S. Smith, K.B. Swartz, D.W. Visser, P.J. Woods, The astrophysically important \({3}^{+}\) state in \({}^{18}\)Ne and the \({}^{17}\)F \((p,\gamma {)}^{18}\)Ne stellar rate. Phys. Rev. C 62, 055804 (2000). https://doi.org/10.1103/PhysRevC.62.055804

    Article  ADS  Google Scholar 

  20. D.W. Visser, J.A. Caggiano, R. Lewis, W.B. Handler, A. Parikh, P.D. Parker, Particle decay branching ratios for states of astrophysical importance in \(^{19}\)Ne. Phys. Rev. C 69, 048801 (2004). https://doi.org/10.1103/PhysRevC.69.048801

    Article  ADS  Google Scholar 

  21. A.S.J. Murphy, M. Aliotta, T. Davinson, C. Ruiz, P.J. Woods, J.M. D’Auria, L. Buchmann, A.A. Chen, A.M. Laird, F. Sarazin, P. Walden, B.R. Fulton, J.E. Pearson, B.A. Brown, Level structure of \(^{21}\)Mg: nuclear and astrophysical implications. Phys. Rev. C 73, 034320 (2006). https://doi.org/10.1103/PhysRevC.73.034320

    Article  ADS  Google Scholar 

  22. B.T. Roeder, M. McCleskey, L. Trache, A.A. Alharbi, A. Banu, S. Cherubini, T. Davinson, V.Z. Goldberg, M. Gulino, R.G. Pizzone, E. Simmons, R. Spartà, A. Spiridon, C. Spitaleri, J.P. Wallace, R.E. Tribble, P.J. Woods, The Texas–Edinburgh–Catania silicon array (TECSA): a detector for nuclear astrophysics and nuclear structure studies with rare isotope beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 634(1), 71–76 (2011). https://doi.org/10.1016/j.nima.2011.01.035

    Article  ADS  Google Scholar 

  23. P. Adsley, R. Neveling, P. Papka, Z. Dyers, J.W. Brümmer, C.A. Diget, N.J. Hubbard, K.C.W. Li, A. Long, D.J. Marin-Lambarri, L. Pellegri, V. Pesudo, L.C. Pool, F.D. Smit, S. Triambak, CAKE: the coincidence array for K600 experiments. J. Instrument. 12(02), 02004 (2017). https://doi.org/10.1088/1748-0221/12/02/T02004

    Article  ADS  Google Scholar 

  24. E.C. Good, B. Sudarsan, K.T. Macon, C.M. Deibel, L.T. Baby, J.C. Blackmon, C. Benetti, J.C. Esparza, N. Gerken, K. Hanselman, G.W. McCann, A.B. Morelock, J.F. Perello, K.H. Pham, E. Rubino, E. Temanson, I. Wiedenhöver, SABRE: the silicon array for branching ratio experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1003, 165299 (2021). https://doi.org/10.1016/j.nima.2021.165299

    Article  Google Scholar 

  25. S.D. Pain, J.A. Cizewski, R. Hatarik, K.L. Jones, J.S. Thomas, D.W. Bardayan, J.C. Blackmon, C.D. Nesaraja, M.S. Smith, R.L. Kozub, M.S. Johnson, Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 261(1), 1122–1125 (2007). https://doi.org/10.1016/j.nimb.2007.04.289. (The Application of Accelerators in Research and Industry)

    Article  ADS  Google Scholar 

  26. S. Chesnevskaya, D.L. Balabanski, D. Choudhury, P. Constantin, D.M. Filipescu, D.G. Ghita, G.L. Guardo, D. Lattuada, C. Matei, A. Rotaru, A. State, Performance studies of X3 silicon detectors for the future ELISSA array at ELI-NP. J. Inst. 13(5), 05006 (2018). https://doi.org/10.1088/1748-0221/13/05/T05006

    Article  ADS  Google Scholar 

  27. G.L. Engel, M. Sadasivam, M. Nethi, J.M. Elson, L.G. Sobotka, R.J. Charity, A multi-channel integrated circuit for use in low- and intermediate-energy nuclear physics-HINP16C. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 573(3), 418–426 (2007). https://doi.org/10.1016/j.nima.2006.12.052

    Article  ADS  Google Scholar 

  28. M.S. Wallace, M.A. Famiano, M.-J. van Goethem, A.M. Rogers, W.G. Lynch, J. Clifford, F. Delaunay, J. Lee, S. Labostov, M. Mocko, L. Morris, A. Moroni, B.E. Nett, D.J. Oostdyk, R. Krishnasamy, M.B. Tsang, R.T. de Souza, S. Hudan, L.G. Sobotka, R.J. Charity, J. Elson, G.L. Engel, The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 583(2), 302–312 (2007). https://doi.org/10.1016/j.nima.2007.08.248

    Article  ADS  Google Scholar 

  29. D.W. Bardayan, S. Ahn, J.C. Blackmon, A.J. Burkhart, K.Y. Chae, J.A. Cizewski, J. Elson, S. Hardy, R.L. Kozub, L. Linhardt, B. Manning, M. Matoš, S.D. Pain, L.G. Sobotka, M.S. Smith, Construction and commissioning of the SuperORRUBA detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 711, 160–165 (2013). https://doi.org/10.1016/j.nima.2013.01.035

    Article  ADS  Google Scholar 

  30. K.A. Chipps, U. Greife, D.W. Bardayan, J.C. Blackmon, A. Kontos, L.E. Linhardt, M. Matos, S.D. Pain, S.T. Pittman, A. Sachs, H. Schatz, K.T. Schmitt, M.S. Smith, P. Thompson, The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 763, 553–564 (2014). https://doi.org/10.1016/j.nima.2014.06.042

    Article  ADS  Google Scholar 

  31. K. Schmidt, K.A. Chipps, S. Ahn, D.W. Bardayan, J. Browne, U. Greife, Z. Meisel, F. Montes, P.D. O’Malley, W.-J. Ong, S.D. Pain, H. Schatz, K. Smith, M.S. Smith, P.J. Thompson, Status of the JENSA gas-jet target for experiments with rare isotope beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 911, 1–9 (2018). https://doi.org/10.1016/j.nima.2018.09.052

    Article  ADS  Google Scholar 

  32. M. Munch, C. Matei, S.D. Pain, M.T. Febbraro, K.A. Chipps, H.J. Karwowski, C.A. Diget, A. Pappalardo, S. Chesnevskaya, G.L. Guardo, D. Walter, D.L. Balabanski, F.D. Becchetti, C.R. Brune, K.Y. Chae, J. Frost-Schenk, M.J. Kim, M.S. Kwag, M. La Cognata, D. Lattuada, R.G. Pizzone, G.G. Rapisarda, G.V. Turturica, C.A. Ur, Y. Xu, Measurement of the \({}^{7}\)Li \({(\gamma ,t)}^{4}\)He ground-state cross section between \({E}_{\gamma }=4.4\) and 10 MeV. Phys. Rev. C 101, 055801 (2020). https://doi.org/10.1103/PhysRevC.101.055801

    Article  ADS  Google Scholar 

  33. D. Bemmerer, F. Confortola, H. Costantini, A. Formicola, G. Gyürky, R. Bonetti, C. Broggini, P. Corvisiero, Z. Elekes, Z. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino, G. Imbriani, M. Junker, M. Laubenstein, A. Lemut, B. Limata, V. Lozza, M. Marta, R. Menegazzo, P. Prati, V. Roca, C. Rolfs, C.R. Alvarez, E. Somorjai, O. Straniero, F. Strieder, F. Terrasi, H.P. Trautvetter, Activation measurement of the \(^{3}\)He\((\alpha ,\gamma )^{7}\)Be cross section at low energy. Phys. Rev. Lett. 97, 122502 (2006). https://doi.org/10.1103/PhysRevLett.97.122502

    Article  ADS  Google Scholar 

  34. A. Di Leva, L. Gialanella, R. Kunz, D. Rogalla, D. Schürmann, F. Strieder, M. De Cesare, N. De Cesare, A. D’Onofrio, Z. Fülöp, G. Gyürky, G. Imbriani, G. Mangano, A. Ordine, V. Roca, C. Rolfs, M. Romano, E. Somorjai, F. Terrasi, Stellar and primordial nucleosynthesis of \(^{7}\)Be: Measurement of \(^{3}\)He\((\alpha ,\gamma )^{7}\)Be. Phys. Rev. Lett. 102, 232502 (2009). https://doi.org/10.1103/PhysRevLett.102.232502

    Article  ADS  Google Scholar 

  35. T. Neff, Microscopic calculation of the \(^{3}\)He\((\alpha ,\gamma )^{7}\)Be and \(^{3}\)H\((\alpha ,\gamma )^{7}\)Li capture cross sections using realistic interactions. Phys. Rev. Lett. 106, 042502 (2011). https://doi.org/10.1103/PhysRevLett.106.042502

    Article  ADS  Google Scholar 

  36. J. Dohet-Eraly, P. Navretil, S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, \(^3\)He(\(\alpha \),\(\gamma \))\(^7\)Be and \(^3\)H(\(\alpha \),\(\gamma \))\(^7\)Li astrophysical S factors from the no-core shell model with continuum. Phys. Lett. B 757, 430–436 (2016). https://doi.org/10.1016/j.physletb.2016.04.021

    Article  ADS  Google Scholar 

  37. C.R. Brune, R.W. Kavanagh, C. Rolfs, \(^{3}\)H \((\alpha ,\gamma )^{7}\)Li reaction at low energies. Phys. Rev. C 50, 2205–2218 (1994). https://doi.org/10.1103/PhysRevC.50.2205

    Article  ADS  Google Scholar 

  38. K. Vogt, P. Mohr, M. Babilon, W. Bayer, D. Galaviz, T. Hartmann, C. Hutter, T. Rauscher, K. Sonnabend, S. Volz, A. Zilges, Measurement of the (\(\gamma \), n) cross section of the nucleus 197Au close above the reaction threshold. Nucl. Phys. A 707(1), 241–252 (2002). https://doi.org/10.1016/S0375-9474(02)00922-3

    Article  ADS  Google Scholar 

  39. O. Itoh, H. Utsunomiya, H. Akimune, T. Kondo, M. Kamata, T. Yamagata, H. Toyokawa, H. Harada, F. Kitatani, S. Goko, C. Nair, Y.-W. Lui, Photoneutron cross sections for au revisited: measurements with laser compton scattering \(\gamma \)-Rays and data reduction by a least-squares method. J. Nucl. Sci. Technol. 48(5), 834–840 (2011)

    Article  Google Scholar 

  40. R.E. Azuma, E. Uberseder, E.C. Simpson, C.R. Brune, H. Costantini, R.J. de Boer, J. Görres, M. Heil, P.J. LeBlanc, C. Ugalde, M. Wiescher, AZURE: an \(R\)-matrix code for nuclear astrophysics. Phys. Rev. C 81(4), 045805 (2010). https://doi.org/10.1103/PhysRevC.81.045805

    Article  ADS  Google Scholar 

  41. E. Uberseder, R.J. deBoer, AZURE2 Users Manual (2015). azure.nd.edu

  42. J.-J. Dormard, M. Assié, L. Grassi, E. Rauly, D. Beaumel, G. Brulin, M. Chabot, J.-L. Coacolo, F. Flavigny, B. Genolini, F. Hammache, T.I. Barkach, E. Rindel, P. Rosier, N. de Séréville, E. Wanlin, Pulse shape discrimination for GRIT: beam test of a new integrated charge and current preamplifier coupled with high granularity silicon detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1013, 165641 (2021). https://doi.org/10.1016/j.nima.2021.165641

    Article  Google Scholar 

  43. M. Labiche, W.N. Catford, R.C. Lemmon, C.N. Timis, R. Chapman, N.A. Orr, B. Fernández-Domínguez, G. Moores, N.L. Achouri, N. Amzal, S. Appleton, N.I. Ashwood, T.D. Baldwin, M. Burns, L. Caballero, J. Cacitti, J.M. Casadjian, M. Chartier, N. Curtis, K. Faiz, G. de France, M. Freer, J.M. Gautier, W. Gelletly, G. Iltis, B. Lecornu, X. Liang, C. Marry, Y. Merrer, L. Olivier, S.D. Pain, V.F.E. Pucknell, B. Raine, M. Rejmund, B. Rubio, F. Saillant, H. Savajols, O. Sorlin, K. Spohr, C. Theisen, G. Voltolini, D.D. Warner, TIARA: a large solid angle silicon array for direct reaction studies with radioactive beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 614(3), 439–448 (2010). https://doi.org/10.1016/j.nima.2010.01.009

    Article  ADS  Google Scholar 

  44. V. Bildstein, R. Gernhäuser, T. Kröll, R. Krücken, R. Raabe, P.V. Duppen, A new setup for transfer reactions at REX-ISOLDE. Prog. Part. Nucl. Phys. 59(1), 386–388 (2007). https://doi.org/10.1016/j.ppnp.2007.01.010

    Article  ADS  Google Scholar 

  45. C. Berner, L. Werner, R. Gernhäuser, T. Kröll, HI-TREX—a highly integrated transfer setup at REX-(HIE)ISOLDE. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 987, 164827 (2021). https://doi.org/10.1016/j.nima.2020.164827

    Article  Google Scholar 

  46. C.A. Diget, S.P. Fox, A. Smith, S. Williams, M. Porter-Peden, L. Achouri, P. Adsley, H. Al-Falou, R.A.E. Austin, G.C. Ball, J.C. Blackmon, S. Brown, W.N. Catford, A.A. Chen, J. Chen, R.M. Churchman, J. Dech, D.D. Valentino, M. Djongolov, B.R. Fulton, A. Garnsworthy, G. Hackman, U. Hager, R. Kshetri, L. Kurchaninov, A.M. Laird, J.-P. Martin, M. Matos, J.N. Orce, N.A. Orr, C.J. Pearson, C. Ruiz, F. Sarazin, S. Sjue, D. Smalley, C.E. Svensson, M. Taggart, E. Tardiff, G.L. Wilson, SHARC: silicon highly-segmented array for reactions and coulex used in conjunction with the TIGRESS \(\gamma \)-ray spectrometer. J. Instrument. 6(02), 02005 (2011). https://doi.org/10.1088/1748-0221/6/02/P02005

    Article  Google Scholar 

  47. S.D. Pain, A. Ratkiewicz, T. Baugher, M. Febbraro, A. Lepailleur, A.D. Ayangeakaa, J. Allen, J.T. Anderson, D.W. Bardayan, J.C. Blackmon, R. Blanchard, S. Burcher, M.P. Carpenter, S.M. Cha, K.Y. Chae, K.A. Chipps, J.A. Cizewski, A. Engelhardt, H. Garland, K.L. Jones, R.L. Kozub, E.J. Lee, M.R. Hall, O. Hall, J. Hu, P.D. O’Malley, I. Marsh, B.C. Rasco, D. Santiago-Gonzales, D. Seweryniak, S. Shadrick, H. Sims, K. Smith, M.S. Smith, P.-L. Tai, P. Thompson, C. Thornsberry, R.L. Varner, D. Walter, G.L. Wilson, S. Zhu, Direct reaction measurements using GODDESS. Phys. Proc. 90, 455–462 (2017). https://doi.org/10.1016/j.phpro.2017.09.051

    Article  ADS  Google Scholar 

  48. C.A. Ur, A. Zilges, N. Pietralla, J. Beller, B. Boisdeffre, M.O. Cernaianu, V. Derya, B. Loher, C. Matei, G. Pascovici, C. Petcu, C. Romig, D. Savran, G. Suliman, E. Udup, V. Werner, Nuclear resonance fluorescence experiments at ELI-NP. Rom. Rep. Phys. 68, 483–538 (2016)

    Google Scholar 

  49. P.-A. Söderström, E. Açıksöz, D.L. Balabanski, F. Camera, L. Capponi, G. Ciocan, M. Cuciuc, D.M. Filipescu, I. Gheorghe, T. Glodariu, J. Kaur, M. Krzysiek, C. Matei, T. Roman, A. Rotaru, A.B. Şerban, A. State, H. Utsunomiya, V. Vasilca, ELIGANT-GN - ELI gamma above neutron threshold: the gamma-neutron setup. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 1027, 166171 (2022). https://doi.org/10.1016/j.nima.2021.166171

    Article  Google Scholar 

  50. M. Heffner, D.M. Asner, R.G. Baker, J. Baker, S. Barrett, C. Brune, J. Bundgaard, E. Burgett, D. Carter, M. Cunningham, J. Deaven, D.L. Duke, U. Greife, S. Grimes, U. Hager, N. Hertel, T. Hill, D. Isenhower, K. Jewell, J. King, J.L. Klay, V. Kleinrath, N. Kornilov, R. Kudo, A.B. Laptev, M. Leonard, W. Loveland, T.N. Massey, C. McGrath, R. Meharchand, L. Montoya, N. Pickle, H. Qu, V. Riot, J. Ruz, S. Sangiorgio, B. Seilhan, S. Sharma, L. Snyder, S. Stave, G. Tatishvili, R.T. Thornton, F. Tovesson, D. Towell, R.S. Towell, S. Watson, B. Wendt, L. Wood, L. Yao, A time projection chamber for high accuracy and precision fission cross-section measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 759, 50–64 (2014). https://doi.org/10.1016/j.nima.2014.05.057

    Article  ADS  Google Scholar 

  51. E. Koshchiy, G.V. Rogachev, E. Pollacco, S. Ahn, E. Uberseder, J. Hooker, J. Bishop, E. Aboud, M. Barbui, V.Z. Goldberg, C. Hunt, H. Jayatissa, C. Magana, R. O’Dwyer, B.T. Roeder, A. Saastamoinen, S. Upadhyayula, Texas Active Target (TexAT) detector for experiments with rare isotope beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 957, 163398 (2020). https://doi.org/10.1016/j.nima.2020.163398

    Article  Google Scholar 

  52. J. Bishop, C.E. Parker, G.V. Rogachev, S. Ahn, E. Koshchiy, K. Brandenburg, C.R. Brune, R.J. Charity, J. Derkin, N. Dronchi, G. Hamad, Y. Jones-Alberty, T. Kokalova, T.N. Massey, Z. Meisel, E.V. Ohstrom, S.N. Paneru, E.C. Pollacco, M. Saxena, N. Singh, R. Smith, L.G. Sobotka, D. Soltesz, S.K. Subedi, A.V. Voinov, J. Warren, C. Wheldon, Neutron-upscattering enhancement of the triple-alpha process. Nat. Commun. 13, 2151 (2022). https://doi.org/10.1038/s41467-022-29848-7

    Article  ADS  Google Scholar 

  53. K. Greisen, End to the Cosmic–Ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966). https://doi.org/10.1103/PhysRevLett.16.748

    Article  ADS  Google Scholar 

  54. G.T. Zatsepin, V.A. Kuz’min, Upper limit of the spectrum of cosmic rays. Soviet J. Exp. Theor. Phys. Lett. 4, 78 (1966)

    Google Scholar 

  55. H. Ohgaki, S. Sugiyama, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki, T. Noguchi, T. Tomimasu, Measurement of laser-induced Compton backscattered photons with anti-Compton spectrometer. IEEE Trans. Nucl. Sci. 38(2), 386–392 (1991). https://doi.org/10.1109/23.289330

    Article  ADS  Google Scholar 

  56. T. Kii, T. Shima, T. Baba, Y. Nagai, A time projection chamber for the study of nuclear photodisintegration. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equipm. 552(3), 329–343 (2005). https://doi.org/10.1016/j.nima.2005.07.003

    Article  ADS  Google Scholar 

  57. T. Shima, Y. Nagai, S. Miyamoto, S. Amano, K. Horikawa, T. Mochizuki, H. Utsunomiya, H. Akimune, Experimental study of nuclear astrophysics with photon beams. AIP Conf. Proc. 1235(1), 315–321 (2010). https://doi.org/10.1063/1.3442615

    Article  ADS  Google Scholar 

  58. V.N. Fetisov, A.N. Gorbunov, A.T. Varfolomeev, Nuclear photoeffect on three-particle nuclei. Nucl. Phys. 71(2), 305–342 (1965). https://doi.org/10.1016/0029-5582(65)90720-0

    Article  Google Scholar 

  59. P. Dyer, C.A. Barnes, The \(^{12}\)C(\(\alpha \),\(\gamma \))\(^{16}\)O reaction and stellar helium burning. Nucl. Phys. A 233(2), 495–520 (1974). https://doi.org/10.1016/0375-9474(74)90470-9

    Article  ADS  Google Scholar 

  60. A. Redder, H.W. Becker, C. Rolfs, H.P. Trautvetter, T.R. Donoghue, T.C. Rinckel, J.W. Hammer, K. Langanke, The \(^{12}\)C(\(\alpha \),\(\gamma \))\(^{16}\)O cross section at stellar energies. Nucl. Phys. A 462(2), 385–412 (1987). https://doi.org/10.1016/0375-9474(87)90555-0

    Article  ADS  Google Scholar 

  61. J.M.L. Ouellet, M.N. Butler, H.C. Evans, H.W. Lee, J.R. Leslie, J.D. MacArthur, W. McLatchie, H.-B. Mak, P. Skensved, J.L. Whitton, X. Zhao, T.K. Alexander, \(^{12}\)C \((\alpha ,\gamma )^{16}\)O cross sections at stellar energies. Phys. Rev. C 54, 1982–1998 (1996). https://doi.org/10.1103/PhysRevC.54.1982

    Article  ADS  Google Scholar 

  62. R. Kunz, M. Jaeger, A. Mayer, J.W. Hammer, G. Staudt, S. Harissopulos, T. Paradellis, \(^{12}\)C\((\alpha ,\gamma )^{16}\)O: The key reaction in stellar nucleosynthesis. Phys. Rev. Lett. 86, 3244–3247 (2001). https://doi.org/10.1103/PhysRevLett.86.3244

    Article  ADS  Google Scholar 

  63. M. Assunção, M. Fey, A. Lefebvre-Schuhl, J. Kiener, V. Tatischeff, J.W. Hammer, C. Beck, C. Boukari-Pelissie, A. Coc, J.J. Correia, S. Courtin, F. Fleurot, E. Galanopoulos, C. Grama, F. Haas, F. Hammache, F. Hannachi, S. Harissopulos, A. Korichi, R. Kunz, D. LeDu, A. Lopez-Martens, D. Malcherek, R. Meunier, T. Paradellis, M. Rousseau, N. Rowley, G. Staudt, S. Szilner, J.P. Thibaud, J.L. Weil, \({E1}\) and \({E2} {S}\) factors of \(^{12}\)C\((\alpha ,{\gamma }_{0})^{16}\)O from \(\gamma \)-ray angular distributions with a 4 \(\pi \)-detector array. Phys. Rev. C 73, 055801 (2006). https://doi.org/10.1103/PhysRevC.73.055801

    Article  ADS  Google Scholar 

  64. D. Schürmann, A. Di Leva, L. Gialanella, R. Kunz, F. Strieder, N. De Cesare, M. De Cesare, A. D’Onofrio, K. Fortak, G. Imbriani, D. Rogalla, M. Romano, F. Terrasi, Study of the 6.05 MeV cascade transition in \(^{12}\)C(\(\alpha \),\(\gamma \))\(^{16}\)O. Phys. Lett. B 703(5), 557–561 (2011). https://doi.org/10.1016/j.physletb.2011.08.061

    Article  ADS  Google Scholar 

  65. H. Makii, Y. Nagai, T. Shima, M. Segawa, K. Mishima, H. Ueda, M. Igashira, T. Ohsaki, \({E}1\) and \({E}2\) cross sections of the \(^{12}\)C\((\alpha ,{\gamma }_{0})^{16}\)O reaction using pulsed \(\alpha \) beams. Phys. Rev. C 80, 065802 (2009). https://doi.org/10.1103/PhysRevC.80.065802

    Article  ADS  Google Scholar 

  66. R. Plag, R. Reifarth, M. Heil, F. Käppeler, G. Rupp, F. Voss, K. Wisshak, \({}^{12}\)C(\(\alpha,\gamma \))\({}^{16}\)O studied with the Karlsruhe 4\(\pi \) BaF\({}_{2}\) detector. Phys. Rev. C 86, 015805 (2012). https://doi.org/10.1103/PhysRevC.86.015805

    Article  ADS  Google Scholar 

  67. F.C. Barker, T. Kajino, The \(^{12}\)C\((\alpha,\gamma )^{16}\)O cross section at low energies. Aust. J. Phys. 44, 369–396 (1991). https://doi.org/10.1071/PH910369

    Article  ADS  Google Scholar 

  68. P. Tischhauser, A. Couture, R. Detwiler, J. Görres, C. Ugalde, E. Stech, M. Wiescher, M. Heil, F. Käppeler, R.E. Azuma, L. Buchmann, Measurement of elastic \(^{12}\)C + \(\alpha \) scattering: Details of the experiment, analysis, and discussion of phase shifts. Phys. Rev. C 79, 055803 (2009). https://doi.org/10.1103/PhysRevC.79.055803

    Article  ADS  Google Scholar 

  69. L.D. Knutson, Watson’s theorem for low-energy \(p-d\) radiative capture. Phys. Rev. C 59, 2152–2161 (1999). https://doi.org/10.1103/PhysRevC.59.2152

    Article  ADS  Google Scholar 

  70. C.R. Brune, Electric-multipole interference effects in the \({}^{12}\)C\((\alpha ,{\gamma }_{0}{)}^{16}\)O reaction. Phys. Rev. C 64, 055803 (2001). https://doi.org/10.1103/PhysRevC.64.055803

    Article  ADS  Google Scholar 

  71. M. Gai, Ambiguities in the rate of oxygen formation during stellar helium burning in the \({}^{12}\)C(\(\alpha \),\(\gamma \)) reaction. Phys. Rev. C 88, 062801 (2013). https://doi.org/10.1103/PhysRevC.88.062801

    Article  ADS  Google Scholar 

  72. C.R. Brune, D.B. Sayre, Energy deconvolution of cross-section measurements with an application to the \({}^{12}\)C\((\alpha ,\gamma ){}^{16}\)O reaction. Nucl. Instrum. Methods Phys. Res. Secti. A Accelerat. Spectromet. Detect. Assoc. Equipm. 698, 49–59 (2013). https://doi.org/10.1016/j.nima.2012.09.023

    Article  ADS  Google Scholar 

  73. R. Plaga, H. Becker, A. Redder, C. Rolfs, H. Trautvetter, K. Langanke, The scattering of alpha particles from \(^{12}\)C and the \(^{12}\)C(\(\alpha \), \(\gamma \))\(^{16}\)O stellar reaction rate. Nucl. Phys. A 465(2), 291–316 (1987). https://doi.org/10.1016/0375-9474(87)90436-2

    Article  ADS  Google Scholar 

  74. M. Bruno, I. Massa, A. Uguzzoni, G. Vannini, E. Verondini, A. Vitale, Experimental study of the \(\alpha \)-\(^{12}\)C elastic scattering. R-matrix analysis of the phase shifts and \(^{16}\)O levels. Il. Nuovo Cimento A (1965-1970) 27(1), 1–26 (1975). https://doi.org/10.1007/BF02785263

    Article  Google Scholar 

  75. R. Smith, M. Gai, S. Stern, D. Schweitzer, M. Ahmed, Precision measurements on oxygen formation in stellar helium burning with gamma-ray beams and a Time Projection Chamber. Nat. Commun. 12(1), 1–8 (2021). https://doi.org/10.1038/s41467-021-26179-x

    Article  Google Scholar 

  76. M. Fey, Im Brennpunkt der Nuklearen Astrophysik: Die Reaktion \({}^{12}\)C \((\alpha ,\gamma ){}^{16}\)O. PhD thesis, Universität Stuttgart (2004). https://doi.org/10.18419/opus-4716

  77. R.J. deBoer, J. Görres, M. Wiescher, R.E. Azuma, A. Best, C.R. Brune, C.E. Fields, S. Jones, M. Pignatari, D. Sayre, K. Smith, F.X. Timmes, E. Uberseder, The \(^{12}\)C\((\alpha ,\gamma )^{16}\)O reaction and its implications for stellar helium burning. Rev. Mod. Phys. 89, 035007 (2017). https://doi.org/10.1103/RevModPhys.89.035007

    Article  ADS  Google Scholar 

  78. M. Gai, M.W. Ahmed, S.C. Stave, W.R. Zimmerman, A. Breskin, B. Bromberger, R. Chechik, V. Dangendorf, T. Delbar, III, R.H.F., S.S. Henshaw, T.J. Kading, P.P. Martel, J.E.R. McDonald, P.-N. Seo, K. Tittelmeier, H.R. Weller, A.H. Young, An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HI\(\gamma \)S. J. Instrument. 5(12), 12004 (2010). https://doi.org/10.1088/1748-0221/5/12/P12004

  79. M. Cwiok, M. Bieda, J. Bihalowicz, W. Dominik, W. Janas, L. Janiak, J. Mańczak, T. Matulewicz, C. Mazzocchi, M. Pfützner et al., A TPC detector for studying photo-nuclear reactions at astrophysical energies with gamma-ray beams at ELI-NP. Acta Phys. Pol. B 49, 509–514 (2018). https://doi.org/10.5506/APhysPolB.49.509

    Article  ADS  Google Scholar 

  80. M. Gai, D. Schweitzer, S.R. Stern, A.H. Young, R. Smith, M. Cwiok, J.S. Bihalowicz, H. Czyrkowski, R. Dabrowski, W. Dominik, A. Fijalkowska, Z. Janas, L. Janiak, A. Korgul, T. Matulewicz, C. Mazzocchi, M. Pfützner, M. Zaremba, D. Balabanski, I. Gheorghe, C. Matei, O. Tesileanu, N.V. Zamfir, M.W. Ahmed, S.S. Henshaw, C.R. Howell, J.M. Mueller, L.S. Myers, S. Stave, C. Sun, H.R. Weller, Y.K. Wu, A. Breskin, V. Dangendorf, K. Tittelmeier, M. Freer, Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 954, 161779 (2020). https://doi.org/10.1016/j.nima.2019.01.006

    Article  Google Scholar 

  81. M. Cwiok, W. Dominik, A. Fijalkowska, M. Fila, Z. Janas, A. Kalinowski, K. Kierzkowski, M. Kuich, C. Mazzocchi, W. Okliński, M. Zaremba, M. Gai, D.K. Schweitzer, S.R. Stern, S. Finch, U. Friman-Gayer, S.R. Johnson, T.M. Kowalewski, D.L. Balabanski, C. Matei, A. Rotaru, K.C.Z. Haverson, R. Smith, R.A.M. Allen, M.R. Griffiths, S. Pirrie, P. Santa Rita Alcibia, Studies of photo-nuclear reactions at astrophysical energies with an active-target tpc. EPJ Web Conf. 279, 04002 (2023). https://doi.org/10.1051/epjconf/202327904002

    Article  Google Scholar 

  82. E.C. Pollacco, G.F. Grinyer, F. Abu-Nimeh, T. Ahn, S. Anvar, A. Arokiaraj, Y. Ayyad, H. Baba, M. Babo, P. Baron, D. Bazin, S. Beceiro-Novo, C. Belkhiria, M. Blaizot, B. Blank, J. Bradt, G. Cardella, L. Carpenter, S. Ceruti, E. De Filippo, E. Delagnes, S. De Luca, H. De Witte, F. Druillole, B. Duclos, F. Favela, A. Fritsch, J. Giovinazzo, C. Gueye, T. Isobe, P. Hellmuth, C. Huss, B. Lachacinski, A.T. Laffoley, G. Lebertre, L. Legeard, W.G. Lynch, T. Marchi, L. Martina, C. Maugeais, W. Mittig, L. Nalpas, E.V. Pagano, J. Pancin, O. Poleshchuk, J.L. Pedroza, J. Pibernat, S. Primault, R. Raabe, B. Raine, A. Rebii, M. Renaud, T. Roger, P. Roussel-Chomaz, P. Russotto, G. Saccà, F. Saillant, P. Sizun, D. Suzuki, J.A. Swartz, A. Tizon, A. Trifiró, N. Usher, G. Wittwer, J.C. Yang, Get: a generic electronics system for TPCs and nuclear physics instrumentation. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerat. Spectromet. Detect. Assoc. Equip. 887, 81–93 (2018). https://doi.org/10.1016/j.nima.2018.01.020

  83. Preliminary report for experiment HIGS P-14-21/P-18-19. Technical report, Warsaw TPC collaboration (2021)

Download references

Acknowledgements

This work is supported by the Romanian Ministry of Research, Innovation and Digitalization, Project no. PN-III-P4-PCE-2021-1024 and PN 23 21 01 06; the U.S. Department of Energy, Office of Science, Nuclear Physics program, Grants no. DE-FG02-94ER40870, DE-FG02-88ER40387, and DE-AC05-00OR22725; the U.S. Department of Energy, National Nuclear Security Agency, Grant no. DE-NA0004065; and the UK STFC, Grant no. ST/V001086/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Matei.

Additional information

Communicated by Calin Alexandru Ur.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brune, C.R., Matei, C., Pain, S.D. et al. Photonuclear reactions with charged particles detection for nuclear astrophysics studies. Eur. Phys. J. A 59, 165 (2023). https://doi.org/10.1140/epja/s10050-023-01082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01082-9

Navigation