Skip to main content
Log in

\(\gamma\)-vibration in 198Hg

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Low lying states of 198Hg have been investigated via 197Au(7Li,\(\alpha\)2n\(\gamma\)) reaction at \( E_{\mathrm{beam}} = 33, 38\) MeV and the members of the \(\gamma\)-vibrational band have been identified. Results are compared with the systematic of this mass region and found in agreement. The observed band structures have been interpreted using the theoretical framework of the microscopic triaxial projected shell model (TPSM) approach and it is shown that TPSM results are in fair agreement with the observed energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (Benjamin, New York, 1975)

  2. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)

    Article  ADS  Google Scholar 

  3. R.K. Sheline, Rev. Mod. Phys. 32, 1 (1960)

    Article  ADS  Google Scholar 

  4. T.A. Sienko et al., Phys. Rev. C 67, 064311 (2003)

    Article  ADS  Google Scholar 

  5. National nuclear data center, brookhaven national laboratory, https://doi.org/www.nndc.bnl.gov

  6. R.F. Casten, Nat. Phys. 2, 811 (2006)

    Article  Google Scholar 

  7. S. Mukhopadhyay et al., Phys. Lett. B 739, 462 (2014)

    Article  ADS  Google Scholar 

  8. S. Hjorth et al., Nucl. Phys. A 262, 328 (1976)

    Article  ADS  Google Scholar 

  9. S.G. Wahid et al., Phys. Rev. C 92, 054323 (2015)

    Article  ADS  Google Scholar 

  10. T. Kutsarova et al., Nucl. Phys. A 587, 111 (1995)

    Article  ADS  Google Scholar 

  11. T. Shizuma et al., Phys. Rev. C 65, 064310 (2002)

    Article  ADS  Google Scholar 

  12. C. Wheldon et al., Nucl. Phys. A 652, 103 (1999)

    Article  ADS  Google Scholar 

  13. C.Y. Wu et al., Phys. Rev. C 64, 014307 (2001)

    Article  ADS  Google Scholar 

  14. G. Dracoulis et al., Phys. Lett. B 720, 330 (2013)

    Article  ADS  Google Scholar 

  15. A. Faessler et al., Phys. Lett. B 39, 579 (1972)

    Article  ADS  Google Scholar 

  16. U. Götz et al., Nucl. Phys. A 192, 1 (1972)

    Article  ADS  Google Scholar 

  17. D. Kolb, C. Wong, Nucl. Phys. A 245, 205 (1975)

    Article  ADS  Google Scholar 

  18. D. Proetel et al., Nucl. Phys. A 231, 301 (1974)

    Article  ADS  Google Scholar 

  19. C. Günther et al., Phys. Rev. C 15, 1298 (1977)

    Article  ADS  Google Scholar 

  20. R. Béraud et al., Nucl. Phys. A 284, 221 (1977)

    Article  ADS  Google Scholar 

  21. H. Helppi et al., Phys. Rev. C 23, 2345 (1981)

    Article  ADS  Google Scholar 

  22. R. Kroth et al., Phys. Lett. B 99, 209 (1981)

    Article  ADS  Google Scholar 

  23. H. Helppi et al., Phys. Rev. C 28, 1382 (1983)

    Article  ADS  Google Scholar 

  24. M. Trefz et al., Z. Phys. A 312, 195 (1983)

    Article  ADS  Google Scholar 

  25. K. Hardt et al., Z. Phys. A 312, 251 (1983)

    Article  ADS  Google Scholar 

  26. R. Lieder et al., Nucl. Phys. A 248, 317 (1975)

    Article  ADS  Google Scholar 

  27. D. Mehta et al., Z. Phys. A 339, 317 (1991)

    Article  ADS  Google Scholar 

  28. J.P. Delaroche et al., Phys. Rev. C 50, 2332 (1994)

    Article  ADS  Google Scholar 

  29. G.K. Mehta, A.P. Patro, Nucl. Instrum. Methods Phys. Res. A 268, 334 (1988)

    Article  ADS  Google Scholar 

  30. S. Muralithar et al., Nucl. Instrum. Methods Phys. Res. A 622, 281 (2010)

    Article  ADS  Google Scholar 

  31. G. Duchêne et al., Nucl. Instrum. Methods Phys. Res. A 432, 90 (1999)

    Article  ADS  Google Scholar 

  32. B.P. Ajith-Kumar, A high speed distributed data acquisition system, in Proceedings of the DAE Symposium on Nuclear Physics, Vol. 44B (DAE-BRNS, 2001) p. 390

  33. R. Bhowmik, S. Muralithar, R.P. Singh, INGAsort - A new program for the analysis of multi detector array, in Proceedings of the DAE Symposium on Nuclear Physics, Vol. 44B (DAE-BRNS, 2001) p. 422

  34. R. Palit, AIP Conf. Proc. 1336, 573 (2011)

    Article  ADS  Google Scholar 

  35. R. Palit et al., Nucl. Instrum. Methods Phys. Res. A 680, 90 (2012)

    Article  ADS  Google Scholar 

  36. R. Palit, Multi parameter time-stamped based coincidence search program, private communication

  37. D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995)

    Article  ADS  Google Scholar 

  38. A. Krämer-Flecken et al., Nucl. Instrum. Methods Phys. Res. A 275, 333 (1989)

    Article  ADS  Google Scholar 

  39. L.W. Fagg, S.S. Hanna, Rev. Mod. Phys. 31, 711 (1959)

    Article  ADS  Google Scholar 

  40. K. Starosta et al., Nucl. Instrum. Methods Phys. Res. A 423, 16 (1999)

    Article  ADS  Google Scholar 

  41. S. Chakraborty, Linear Polarization Measurement of Low Lying States in ^198Hg, in Proceedings of the DAE Symposium on Nuclear Physics, Vol. 59 (DAE-BRNS, 2014) p. 210

  42. X. Huang, M. Kang, Nucl. Data Sheets 133, 221 (2016)

    Article  Google Scholar 

  43. M. Sakai, At. Data Nucl. Data Tables 31, 399 (1984)

    Article  ADS  Google Scholar 

  44. H. Kusakari et al., Nucl. Phys. A 242, 13 (1975)

    Article  ADS  Google Scholar 

  45. R. Béraud et al., Phys. Rev. C 4, 1829 (1971)

    Article  ADS  Google Scholar 

  46. Z. Chunmei, Nucl. Data Sheets 95, 59 (2002)

    Article  ADS  Google Scholar 

  47. C. Bernards et al., Phys. Rev. C 79, 054307 (2009)

    Article  ADS  Google Scholar 

  48. T. Daniel et al., Phys. Rev. C 95, 024328 (2017)

    Article  ADS  Google Scholar 

  49. P. Singh et al., Phys. Rev. C 90, 014306 (2014)

    Article  ADS  Google Scholar 

  50. J.A. Alcántara-Núñez et al., Phys. Rev. C 71, 054315 (2005)

    Article  ADS  Google Scholar 

  51. H.J. Li et al., Phys. Rev. C 87, 057303 (2013)

    Article  ADS  Google Scholar 

  52. A. Guessous et al., Phys. Rev. Lett. 75, 2280 (1995)

    Article  ADS  Google Scholar 

  53. H. Watanabe et al., Phys. Lett. B 704, 270 (2011)

    Article  ADS  Google Scholar 

  54. D. Sohler et al., Phys. Rev. C 85, 044303 (2012)

    Article  ADS  Google Scholar 

  55. G. Hebbinghaus et al., Nucl. Phys. A 514, 225 (1990)

    Article  ADS  Google Scholar 

  56. F. Seiffert et al., Nucl. Phys. A 554, 287 (1993)

    Article  ADS  Google Scholar 

  57. E. Macias et al., Comput. Phys. Commun. 11, 75 (1976)

    Article  ADS  Google Scholar 

  58. S. Chakraborty et al., Eur. Phys. J. A 54, 112 (2018)

    Article  ADS  Google Scholar 

  59. X. Wu et al., Phys. Lett. B 316, 235 (1993)

    Article  ADS  Google Scholar 

  60. L.K. Peker, J.H. Hamilton, Phys. Rev. C 20, 855 (1979)

    Article  ADS  Google Scholar 

  61. D.G. Burke, Phys. Rev. C 66, 039801 (2002)

    Article  ADS  Google Scholar 

  62. C.Y. Wu et al., Phys. Rev. C 66, 039802 (2002)

    Article  ADS  Google Scholar 

  63. J.A. Sheikh, K. Hara, Phys. Rev. Lett. 82, 3968 (1999)

    Article  ADS  Google Scholar 

  64. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer-Verlag, New York, 1980)

  65. K. Hara, S. Iwasaki, Nucl. Phys. A 332, 61 (1979)

    Article  ADS  Google Scholar 

  66. K. Hara, S. Iwasaki, Nucl. Phys. A 348, 200 (1980)

    Article  ADS  Google Scholar 

  67. K. Hara, Y. Sun, Int. J. Mod. Phys. E 04, 637 (1995)

    Article  ADS  Google Scholar 

  68. S.G. Nilsson et al., Nucl. Phys. A 131, 1 (1969)

    Article  ADS  Google Scholar 

  69. J.A. Sheikh et al., Phys. Rev. C 77, 034313 (2008)

    Article  ADS  Google Scholar 

  70. J.A. Sheikh et al., Nucl. Phys. A 824, 58 (2009)

    Article  ADS  Google Scholar 

  71. C.L. Zhang et al., Phys. Rev. C 92, 034307 (2015)

    Article  ADS  Google Scholar 

  72. G.H. Bhat et al., Phys. Rev. C 86, 047307 (2012)

    Article  ADS  Google Scholar 

  73. S. Raman et al., At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  74. N. Zamfir, R. Casten, Phys. Lett. B 260, 265 (1991)

    Article  ADS  Google Scholar 

  75. K. Kumar, Phys. Rev. C 1, 369 (1970)

    Article  ADS  Google Scholar 

  76. C. Baktash et al., Phys. Rev. C 18, 131 (1978)

    Article  ADS  Google Scholar 

  77. C. Baktash et al., Phys. Rev. C 22, 2383 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Sharma.

Additional information

Communicated by R.K. Bhandari

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Sharma, H.P., Tiwary, S.S. et al. \(\gamma\)-vibration in 198Hg. Eur. Phys. J. A 55, 46 (2019). https://doi.org/10.1140/epja/i2019-12707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12707-5

Navigation