Skip to main content
Log in

Combined parametrization of GEn and \(\gamma^{\ast} N \rightarrow \Delta (1232)\) quadrupole form factors

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Models based on SU(6) symmetry breaking and large Nc limit provide relations between the pion cloud contributions to the \(\gamma^{\ast} N \rightarrow \Delta (1232)\) quadrupole form factors, electric (GE) and Coulomb (GC), and the neutron electric form factor GEn, suggesting that those form factors are dominated by the same physical processes. Those relations are improved in order to satisfy a fundamental constraint between the electric and Coulomb quadrupole form factors in the long wavelength limit, when the photon three-momentum vanishes (Siegert’s theorem). Inspired by those relations, we study alternative parametrizations for the neutron electric form factor. The parameters of the new form are then determined by a combined fit to the GEn and the \( \gamma^{\ast} N \rightarrow \Delta (1232)\) quadrupole form factor data. We obtain a very good description of the GE and GC data when we combine the pion cloud contributions with small valence quark contributions to the \( \gamma^{\ast} N \rightarrow \Delta (1232)\) quadrupole form factors. The best description of the data is obtained when the second momentum of GEn is \( r_{n}^{4} \simeq -0.4\) fm4. We conclude that the square radii associated with GE and GC, \( r_{E}^{2}\) and \( r_{C}^{2}\), respectively, are large, revealing the long extension of the pion cloud. We conclude also that those square radii are related by \( r_{E}^{2} - r_{C}^{2} = 0.6 \pm 0.2\) fm2. The last result is mainly the consequence of the pion cloud effects and Siegert’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)

    ADS  Google Scholar 

  2. V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007)

    ADS  Google Scholar 

  3. I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)

    ADS  Google Scholar 

  4. H.F. Jones, M.D. Scadron, Ann. Phys. 81, 1 (1973)

    ADS  Google Scholar 

  5. M.A.B. Beg, B.W. Lee, A. Pais, Phys. Rev. Lett. 13, 514 (1964)

    ADS  Google Scholar 

  6. C. Becchi, G. Morpurgo, Phys. Lett. 17, 352 (1965)

    ADS  Google Scholar 

  7. B. Julia-Diaz, T.-S.H. Lee, T. Sato, L.C. Smith, Phys. Rev. C 75, 015205 (2007)

    ADS  Google Scholar 

  8. G. Ramalho, M.T. Peña, F. Gross, Eur. Phys. J. A 36, 329 (2008)

    ADS  Google Scholar 

  9. G. Ramalho, M.T. Peña, J. Phys. G 36, 115011 (2009)

    ADS  Google Scholar 

  10. G. Ramalho, K. Tsushima, Phys. Rev. D 87, 093011 (2013)

    ADS  Google Scholar 

  11. G. Ramalho, K. Tsushima, Phys. Rev. D 88, 053002 (2013)

    ADS  Google Scholar 

  12. G. Eichmann, D. Nicmorus, Phys. Rev. D 85, 093004 (2012)

    ADS  Google Scholar 

  13. J. Segovia, C. Chen, C.D. Roberts, S. Wan, Phys. Rev. C 88, 032201 (2013)

    ADS  Google Scholar 

  14. H. Sanchis-Alepuz, R. Alkofer, C.S. Fischer, Eur. Phys. J. A 54, 41 (2018)

    ADS  Google Scholar 

  15. N. Isgur, G. Karl, R. Koniuk, Phys. Rev. D 25, 2394 (1982)

    ADS  Google Scholar 

  16. S. Capstick, G. Karl, Phys. Rev. D 41, 2767 (1990)

    ADS  Google Scholar 

  17. G. Ramalho, M.T. Peña, F. Gross, Phys. Rev. D 78, 114017 (2008)

    ADS  Google Scholar 

  18. G. Ramalho, M.T. Peña, Phys. Rev. D 80, 013008 (2009)

    ADS  Google Scholar 

  19. G. Ramalho, Phys. Rev. D 94, 114001 (2016)

    ADS  Google Scholar 

  20. G. Ramalho, Eur. Phys. J. A 54, 75 (2018)

    ADS  Google Scholar 

  21. S.L. Glashow, Physica A 96, 27 (1979)

    ADS  Google Scholar 

  22. A.M. Bernstein, Eur. Phys. J. A 17, 349 (2003)

    ADS  Google Scholar 

  23. A.J. Buchmann, E. Hernandez, A. Faessler, Phys. Rev. C 55, 448 (1997)

    ADS  Google Scholar 

  24. M.I. Krivoruchenko, M.M. Giannini, Phys. Rev. D 43, 3763 (1991)

    ADS  Google Scholar 

  25. A.J. Buchmann, E.M. Henley, Phys. Rev. C 63, 015202 (2000)

    ADS  Google Scholar 

  26. G. Ramalho, M.T. Peña, A. Stadler, Phys. Rev. D 86, 093022 (2012)

    ADS  Google Scholar 

  27. G. Ramalho, M.T. Peña, F. Gross, Phys. Lett. B 678, 355 (2009)

    ADS  Google Scholar 

  28. G. Ramalho, M.T. Peña, F. Gross, Phys. Rev. D 81, 113011 (2010)

    ADS  Google Scholar 

  29. L. Tiator, D. Drechsel, S. Kamalov, M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 19, 55 (2004)

    ADS  Google Scholar 

  30. S.S. Kamalov, S.N. Yang, Phys. Rev. Lett. 83, 4494 (1999)

    ADS  Google Scholar 

  31. S.S. Kamalov, S.N. Yang, D. Drechsel, O. Hanstein, L. Tiator, Phys. Rev. C 64, 032201 (2001)

    ADS  Google Scholar 

  32. T. Sato, T.S.H. Lee, Phys. Rev. C 63, 055201 (2001)

    ADS  Google Scholar 

  33. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 76, 111501 (2007)

    ADS  Google Scholar 

  34. M. Fiolhais, B. Golli, S. Sirca, Phys. Lett. B 373, 229 (1996)

    ADS  Google Scholar 

  35. D.H. Lu, A.W. Thomas, A.G. Williams, Phys. Rev. C 55, 3108 (1997)

    ADS  Google Scholar 

  36. G. Ramalho, Few Body Syst. 59, 92 (2018)

    ADS  Google Scholar 

  37. A.J. Buchmann, Phys. Rev. Lett. 93, 212301 (2004)

    ADS  Google Scholar 

  38. P. Grabmayr, A.J. Buchmann, Phys. Rev. Lett. 86, 2237 (2001)

    ADS  Google Scholar 

  39. A.J. Buchmann, Can. J. Phys. 87, 773 (2009)

    ADS  Google Scholar 

  40. A.J. Buchmann, J.A. Hester, R.F. Lebed, Phys. Rev. D 66, 056002 (2002)

    ADS  Google Scholar 

  41. A. Blomberg et al., Phys. Lett. B 760, 267 (2016)

    ADS  Google Scholar 

  42. G. Ramalho, Phys. Rev. D 93, 113012 (2016)

    ADS  Google Scholar 

  43. A.J. Buchmann, E. Hernandez, U. Meyer, A. Faessler, Phys. Rev. C 58, 2478 (1998)

    ADS  Google Scholar 

  44. D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007)

    ADS  Google Scholar 

  45. L. Tiator, S. Kamalov, AIP Conf. Proc. 904, 191 (2007)

    ADS  Google Scholar 

  46. L. Tiator, Few Body Syst. 57, 1087 (2016)

    ADS  Google Scholar 

  47. G. Ramalho, Phys. Lett. B 759, 126 (2016)

    ADS  Google Scholar 

  48. S. Galster, H. Klein, J. Moritz, K.H. Schmidt, D. Wegener, J. Bleckwenn, Nucl. Phys. B 32, 221 (1971)

    ADS  Google Scholar 

  49. J.J. Kelly, Phys. Rev. C 66, 065203 (2002)

    ADS  Google Scholar 

  50. J. Friedrich, T. Walcher, Eur. Phys. J. A 17, 607 (2003)

    ADS  Google Scholar 

  51. W. Bertozzi, J. Friar, J. Heisenberg, J.W. Negele, Phys. Lett. B 41, 408 (1972)

    ADS  Google Scholar 

  52. S. Platchkov et al., Nucl. Phys. A 510, 740 (1990)

    ADS  Google Scholar 

  53. M.M. Kaskulov, P. Grabmayr, Eur. Phys. J. A 19, 157 (2004)

    ADS  Google Scholar 

  54. T.R. Gentile, C.B. Crawford, Phys. Rev. C 83, 055203 (2011)

    ADS  Google Scholar 

  55. N. Kaiser, Phys. Rev. C 68, 025202 (2003)

    ADS  Google Scholar 

  56. M.A. Belushkin, H.-W. Hammer, U.-G. Meissner, Phys. Rev. C 75, 035202 (2007)

    ADS  Google Scholar 

  57. H.W. Hammer, U.G. Meissner, Eur. Phys. J. A 20, 469 (2004)

    ADS  Google Scholar 

  58. I.T. Lorenz, H.-W. Hammer, U.G. Meissner, Eur. Phys. J. A 48, 151 (2012)

    ADS  Google Scholar 

  59. G. Eichmann, G. Ramalho, Phys. Rev. D 98, 093007 (2018) arXiv:1806.04579 [hep-ph]

    ADS  Google Scholar 

  60. F. Gross, G. Ramalho, M.T. Peña, Phys. Rev. C 77, 015202 (2008)

    ADS  Google Scholar 

  61. N. Isgur, G. Karl, D.W.L. Sprung, Phys. Rev. D 23, 163 (1981)

    ADS  Google Scholar 

  62. N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979) Phys. Rev. D 23

    ADS  Google Scholar 

  63. N. Isgur, G. Karl, Phys. Rev. D 20, 1191 (1979)

    ADS  Google Scholar 

  64. G. Dillon, G. Morpurgo, Phys. Lett. B 448, 107 (1999)

    ADS  Google Scholar 

  65. A.J. Buchmann, E.M. Henley, Phys. Rev. D 65, 073017 (2002)

    ADS  Google Scholar 

  66. A.J. Buchmann, R.F. Lebed, Phys. Rev. D 62, 096005 (2000)

    ADS  Google Scholar 

  67. E.E. Jenkins, X. Ji, A.V. Manohar, Phys. Rev. Lett. 89, 242001 (2002)

    ADS  Google Scholar 

  68. D.B. Lichtenberg, Unitary Symmetry and Elementary Particles (Academic Press, New York, 1978)

    Google Scholar 

  69. F.E. Close, An Introduction to Quarks and Partons (Academic Press, London 1979)

  70. A. Buchmann, E. Hernandez, K. Yazaki, Phys. Lett. B 269, 35 (1991)

    ADS  Google Scholar 

  71. C.V. Christov, A. Blotz, H.C. Kim, P. Pobylitsa, T. Watabe, T. Meissner, E. Ruiz Arriola, K. Goeke, Prog. Part. Nucl. Phys. 37, 91 (1996)

    ADS  Google Scholar 

  72. D.H. Lu, A.W. Thomas, A.G. Williams, Phys. Rev. C 57, 2628 (1998)

    ADS  Google Scholar 

  73. L. Tiator, S. Kamalov, AIP Conf. Proc. 904, 191 (2007)

    ADS  Google Scholar 

  74. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. ST 198, 141 (2011)

    Google Scholar 

  75. D. Drechsel, M.M. Giannini, Phys. Lett. B 143, 329 (1984)

    ADS  Google Scholar 

  76. M. Weyrauch, H.J. Weber, Phys. Lett. B 171, 13 (1986) Phys. Lett. B 181

    ADS  Google Scholar 

  77. M. Bourdeau, N.C. Mukhopadhyay, Phys. Rev. Lett. 58, 976 (1987)

    ADS  Google Scholar 

  78. C.E. Carlson, N.C. Mukhopadhyay, Phys. Rev. Lett. 81, 2646 (1998)

    ADS  Google Scholar 

  79. C.E. Carlson, Phys. Rev. D 34, 2704 (1986)

    ADS  Google Scholar 

  80. A1 Collaboration (S. Stave et al.), Phys. Rev. C 78, 025209 (2008)

    Google Scholar 

  81. C. Alexandrou, G. Koutsou, H. Neff, J.W. Negele, W. Schroers, A. Tsapalis, Phys. Rev. D 77, 085012 (2008)

    ADS  Google Scholar 

  82. G. Ramalho, K. Tsushima, F. Gross, Phys. Rev. D 80, 033004 (2009)

    ADS  Google Scholar 

  83. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  84. R. Schiavilla, I. Sick, Phys. Rev. C 64, 041002 (2001)

    ADS  Google Scholar 

  85. T. Eden et al., Phys. Rev. C 50, 1749 (1994)

    ADS  Google Scholar 

  86. I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999)

    ADS  Google Scholar 

  87. C. Herberg et al., Eur. Phys. J. A 5, 131 (1999)

    ADS  Google Scholar 

  88. D.I. Glazier et al., Eur. Phys. J. A 24, 101 (2005)

    ADS  Google Scholar 

  89. J. Bermuth et al., Phys. Lett. B 564, 199 (2003)

    ADS  Google Scholar 

  90. E93026 Collaboration (H. Zhu et al.), Phys. Rev. Lett. 87, 081801 (2001)

    Google Scholar 

  91. E93-038 Collaboration (R. Madey et al.), Phys. Rev. Lett. 91, 122002 (2003)

    Google Scholar 

  92. Jefferson Lab E93-026 Collaboration (G. Warren et al.), Phys. Rev. Lett. 92, 042301 (2004)

    Google Scholar 

  93. BLAST Collaboration (E. Geis et al.), Phys. Rev. Lett. 101, 042501 (2008)

    Google Scholar 

  94. S. Riordan et al., Phys. Rev. Lett. 105, 262302 (2010)

    ADS  Google Scholar 

  95. V.I. Mokeev, https://doi.org/userweb.jlab.org/~mokeev/resonance_electrocouplings/

  96. OOPS Collaboration (N.F. Sparveris et al.), Phys. Rev. Lett. 94, 022003 (2005)

    Google Scholar 

  97. J.J. Kelly et al., Phys. Rev. C 75, 025201 (2007)

    ADS  Google Scholar 

  98. CLAS Collaboration (I.G. Aznauryan et al.), Phys. Rev. C 80, 055203 (2009)

    Google Scholar 

  99. N. Sparveris et al., Eur. Phys. J. A 49, 136 (2013)

    ADS  Google Scholar 

  100. J.R. Taylor, An introduction to the Error Analysis (University Science Books, 1997) Chapt. 9

  101. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Press Syndicate of the University of Cambridge, 1997) Chapt. 15

  102. T. De Forest jr., J.D. Walecka, Adv. Phys. 15, 1 (1966)

    ADS  Google Scholar 

  103. C. Alexandrou, G. Koutsou, J.W. Negele, Y. Proestos, A. Tsapalis, Phys. Rev. D 83, 014501 (2011)

    ADS  Google Scholar 

  104. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. Lett. 95, 232001 (2005)

    ADS  Google Scholar 

  105. T.A. Gail, T.R. Hemmert, Eur. Phys. J. A 28, 91 (2006)

    ADS  Google Scholar 

  106. M. Hilt, T. Bauer, S. Scherer, L. Tiator, Phys. Rev. C 97, 035205 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ramalho.

Additional information

Communicated by R. Alkofer

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, G. Combined parametrization of GEn and \(\gamma^{\ast} N \rightarrow \Delta (1232)\) quadrupole form factors. Eur. Phys. J. A 55, 32 (2019). https://doi.org/10.1140/epja/i2019-12699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12699-0

Navigation