Skip to main content
Log in

Polarization amplitudes in \(\tau^{-} \rightarrow \nu_{\tau} VP\) decay beyond the Standard Model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We study the amplitudes of the \(\tau^{-} \rightarrow \nu_{\tau} VP\) decay for the different polarizations of the vector meson V, using a formalism where the mapping from the quark degrees of freedom to the meson ones is done with the 3P0 model. We extend the formalism to a case, with the operator \(\gamma^{\mu} -\alpha\gamma^{\mu} \gamma_{5}\), that can account for different models beyond the Standard Model and study in detail the \(\tau^{-} \rightarrow \nu_{\tau} K^{\ast 0} K^{-}\) reaction for the different polarizations of the \(K^{\ast 0}\). The results are shown in terms of the \(\alpha\) parameter that differs for each model. We find that \(\frac{\mathrm{d} \Gamma}{\mathrm{d} M_{inv}^{(K^{\ast 0} K^{-})}}\) is very different for each of the third components of the vector spin, \( M=\pm 1, 0\), and in particular the magnitude \(\frac{\mathrm{d} \Gamma}{\mathrm{d} M_{inv}^{(K^{\ast 0} K^{-})}}\vert _{M=+1} -\)\(\frac{\mathrm{d} \Gamma}{\mathrm{d} M_{inv}^{(K^{\ast 0} K^{-})}}\vert _{M=-1}\) is very sensitive to the \(\alpha\) parameter, which makes the investigation of this magnitude very useful to test different models beyond the Standard Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Isgur, C. Morningstar, C. Reader, Phys. Rev. D 39, 1357 (1989)

    Article  ADS  Google Scholar 

  2. H. Kühn, F. Wagner, Nucl. Phys. B 236, 16 (1984)

    Article  ADS  Google Scholar 

  3. B.C. Barish, R. Stroynowski, Phys. Rep. 157, 1 (1988)

    Article  ADS  Google Scholar 

  4. M. Davier, A. Hócker, Z.Q. Zhang, Rev. Mod. Phys. 78, 1043 (2006)

    Article  ADS  Google Scholar 

  5. M. Antonelli, D.M. Asner, D. Bauer et al., Phys. Rep. 494, 197 (2010)

    Article  ADS  Google Scholar 

  6. B.A. Li, Phys. Rev. D 52, 5165 (1995)

    Article  ADS  Google Scholar 

  7. B.A. Li, Phys. Rev. D 52, 5184 (1995)

    Article  ADS  Google Scholar 

  8. B.A. Li, Phys. Rev. D 55, 1436 (1997)

    Article  ADS  Google Scholar 

  9. ALEPH Collaboration (D. Buskulic et al.), Z. Phys. C 74, 263 (1997)

    Article  Google Scholar 

  10. ALEPH Collaboration, Z. Phys. C 70, 579 (1996)

    Article  Google Scholar 

  11. ALEPH Collaboration (R. Barate et al.), Eur. Phys. J. C 1, 65 (1998)

    ADS  Google Scholar 

  12. Belle Collaboration (K. Inami et al.), Phys. Lett. B 672, 209 (2009)

    Article  ADS  Google Scholar 

  13. CLEO Collaboration (K. Arms et al.), Phys. Rev. Lett. 94, 241802 (2005)

    Article  Google Scholar 

  14. ALEPH Collaboration (R. Barate et al.), Eur. Phys. J. C 10, 1 (1999)

    ADS  Google Scholar 

  15. The BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 100, 011801 (2008)

    Article  Google Scholar 

  16. M.K. Volkov, K. Nurlan, A.A. Pivovarov, JETP Lett. 106, 771 (2017)

    Article  ADS  Google Scholar 

  17. G. Lopez Castro, D.A. Lopez Falcon, Phys. Rev. D 54, 4400 (1996)

    Article  ADS  Google Scholar 

  18. M.K. Volkov, A.B. Arbuzov, D.G. Kostunin, Phys. Rev. D 86, 057301 (2012)

    Article  ADS  Google Scholar 

  19. L.R. Dai, R. Pavao, S. Sakai, E. Oset, arXiv:1805.04573 [hep-ph]

  20. L. Micu, Nucl. Phys. B 10, 521 (1969)

    Article  ADS  Google Scholar 

  21. A. Le Yaouanc, L. Oliver, Pène, J.C. Raynal, Phys. Rev. D 8, 2223 (1973)

    Article  ADS  Google Scholar 

  22. F.E. Close, An Introduction to Quark and Partons (Academic Press, 1979)

  23. W.H. Liang, E. Oset, Eur. Phys. J. C 78, 528 (2018)

    Article  ADS  Google Scholar 

  24. X.G. He, G. Valencia, Phys. Lett. B 779, 52 (2018)

    Article  ADS  Google Scholar 

  25. S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, Phys. Lett. B 760, 214 (2016)

    Article  ADS  Google Scholar 

  26. C.H. Chen, T. Nomura, H. Okada, Phys. Lett. B 774, 456 (2017)

    Article  ADS  Google Scholar 

  27. A. Crivellin, D. Müller, T. Ota, JHEP 09, 040 (2017)

    Article  ADS  Google Scholar 

  28. D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy, O. Sumensari, arXiv:1806.05689

  29. M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, Phys. Lett. B 779, 317 (2018)

    Article  ADS  Google Scholar 

  30. N. Assad, B. Fornal, B. Grinstein, Phys. Lett. B 777, 324 (2018)

    Article  ADS  Google Scholar 

  31. M. Blanke, A. Crivellin, Phys. Rev. Lett. 121, 011801 (2018)

    Article  ADS  Google Scholar 

  32. X.G. He, G. Valencia, Phys. Lett. B 779, 52 (2018)

    Article  ADS  Google Scholar 

  33. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  34. K. Hagiwara, A.D. Martin, M.F. Wade, Phys. Lett. B 228, 144 (1989)

    Article  ADS  Google Scholar 

  35. R. Alonso, A. Kobach, J.M. Camalich, Phys. Rev. D 94, 094021 (2016)

    Article  ADS  Google Scholar 

  36. L.R. Dai, E. Oset, arXiv:1808.02876 [hep-ph]

  37. C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill, 1980)

  38. F. Mandl, G. Shaw, Quantum Field Theory (John Wiley & Sons, 1984)

  39. X.G. He, G. Valencia, Phys. Rev. D 87, 014014 (2013)

    Article  ADS  Google Scholar 

  40. ALEPH Collaboration (S. Schael et al.), Phys. Rep. 421, 191 (2005)

    Article  ADS  Google Scholar 

  41. M. Wagner, S. Leupold, Phys. Rev. D 78, 053001 (2008)

    Article  ADS  Google Scholar 

  42. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004)

    Article  ADS  Google Scholar 

  43. L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 014002 (2005)

    Article  ADS  Google Scholar 

  44. Y. Zhou, X.L. Ren, H.X. Chen, L.S. Geng, Phys. Rev. D 90, 014020 (2014)

    Article  ADS  Google Scholar 

  45. I. Caprini, L. Lellouch, M. Neubert, Nucl. Phys. B 530, 153 (1998)

    Article  ADS  Google Scholar 

  46. S. Fajfer, J.F. Kamenik, I. Nisandzic, Phys. Rev. D 85, 094025 (2012)

    Article  ADS  Google Scholar 

  47. Q. Luo, D.R. Xu, in Proceedings of the 9th International Particle Accelerator Conference (JACoW, 2018) https://doi.org/10.18429/JACoW-IPAC2018-MOPML013

  48. S. Eidelman, Nucl. Part. Phys. Proc. 260, 238 (2015)

    Article  Google Scholar 

  49. Joint Workshop of future tau-charm factory, https://doi.org/indico.lal.in2p3.fr/event/4902/#38-tau-physics-with-future-tau

  50. Belle II Collaboration (E. Kou), arXiv:1808.10567 [hep-ex]

  51. Belle Collaboration (K. Adamczyk), PoS CKM2016, 052 (2017)

    Google Scholar 

  52. A.K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London, JHEP 11, 121 (2011)

    Article  ADS  Google Scholar 

  53. K. Hagiwara, A.D. Martin, M.F. Wade, Phys. Lett. B 228, 144 (1989)

    Article  ADS  Google Scholar 

  54. X.G. He, G. Valencia, Phys. Rev. D 66, 013004 (2002) 66

    Article  ADS  Google Scholar 

  55. U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 68, 033001 (2003)

    Article  ADS  Google Scholar 

  56. X.G. He, G. Valencia, Phys. Rev. D 87, 014014 (2013)

    Article  ADS  Google Scholar 

  57. A.K. Alok, D. Kumar, J. Kumar, S. Kumbhakar, S.U. Sankar, JHEP 09, 152 (2018)

    Article  ADS  Google Scholar 

  58. S. Bhattacharya, S. Nandi, S. Kumar Patra, arXiv:1805.08222 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Dai.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L.R., Oset, E. Polarization amplitudes in \(\tau^{-} \rightarrow \nu_{\tau} VP\) decay beyond the Standard Model. Eur. Phys. J. A 54, 219 (2018). https://doi.org/10.1140/epja/i2018-12654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12654-7

Navigation