Skip to main content
Log in

A new model of quintessence compact stars in the Rastall theory of gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In the present work, we study a new model of anisotropic compact stars in the regime of the Rastall theory. To solve the Rastall field equations we have used the Karori and Barua (KB) ansatz along with the quintessence dark energy characterized by a parameter \(\omega_{q}\) with \(-1 < \omega_{q} < -\frac{1}{3}\). We present a comparative study to demonstrate the physical acceptance of our proposed model. We compare the numerical values of physical parameters obtained from our model with those of the general relativity (GR model given by Bhar (Astrophys. Space Sci. 356, 309 (2015)) and observe that our model is more compatible (for some chosen values of Rastall dimensionless parameter \(\gamma = \kappa\lambda\) with observational data than the GR model. For this analysis we have considered four different compact stars, SAXJ 1808 - 3658 (SSI), 4U 1820 - 30 , VelaX -12 and PSRJ 1416 - 2230 with radii 7.07 km, 10 km, 9.99 km and 10.3 km, respectively. In this investigation we also present some physical aspects of the proposed model necessary to check the validity of the model and infer that our model is acceptable physically and geometrically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Rastall, Phys. Rev. D 6, 3357 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  2. I. Licata, H. Moradpour, C. Corda, Int. J. Geom. Methods Mod. Phys. 14, 1730003 (2017)

    Article  MathSciNet  Google Scholar 

  3. M. Capone, V.F. Cardone, M.L. Ruggiero, J. Phys. Conf. Ser. 222, 012012 (2010)

    Article  Google Scholar 

  4. R. Kumar, B.P. Singh, M.S. Ali, S.G. Ghosh, arXiv:1712.09793 [gr-qc]

  5. F. Darabi, K. Atazadeh, Y. Heydarzade, Eur. Phys. J. Plus 133, 259 (2018)

    Article  Google Scholar 

  6. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012)

    Article  Google Scholar 

  7. Y. Heydarzade, H. Hadi, C. Corda, F. Darabi, Phys. Lett. B 776, 457 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Rastall, Can. J. Phys. 54, 66 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  9. Y. Heydarzade, F. Darabi, Phys. Lett. B 771, 365 (2017)

    Article  ADS  Google Scholar 

  10. Y. Heydarzade, H. Moradpour, F. Darabi, Can. J. Phys. 95, 1253 (2017)

    Article  ADS  Google Scholar 

  11. R. Kumar, S.G. Ghosh, Eur. Phys. J. C 78, 750 (2018)

    Article  ADS  Google Scholar 

  12. M.S. Ma, R. Zhao, Eur. Phys. J. C 77, 629 (2017)

    Article  ADS  Google Scholar 

  13. I.P. Lobo, H. Moradpour, J.P. Morais Graca, I.G. Salako, Int. J. Mod. Phys. D 27, 1850069 (2018)

    Article  ADS  Google Scholar 

  14. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012)

    Article  Google Scholar 

  15. H. Moradpour, I.G. Salako, Adv. High Energy Phys. 2016, 3492796 (2016)

    Google Scholar 

  16. H. Moradpour, N. Sadeghnezhad, S.H. Hendi, Can. J. Phys. 95, 1257 (2017)

    Article  ADS  Google Scholar 

  17. H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Phys. Rev. D 96, 123504 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Moradpour, Y. Heydarzade, F. Darabi, I.G. Salako, Eur. Phys. J. C 77, 259 (2017)

    Article  ADS  Google Scholar 

  19. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur. Phys. J. C 78, 25 (2018)

    Article  ADS  Google Scholar 

  20. M. Visser, Phys. Lett. B 782, 83 (2018)

    Article  ADS  Google Scholar 

  21. S. Hansraj, A. Banerjee, P. Channuie, arXiv:1805.00003v1 [gr-qc]

  22. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  23. S. Hansraj, A. Banerjee, arXiv:1807.00812v1 [gr-qc]

  24. R. Ruderman, Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  25. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  26. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  27. S.K. Maurya, A. Banerjee, S. Hansraj, Phys. Rev. D 97, 044022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. S.K. Maurya, S. Ray, S. Ghosh, S. Manna, T.T. Smitha, Ann. Phys. 395, 152 (2018)

    Article  ADS  Google Scholar 

  29. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  30. L. Herrera, A. Di Prisco, J. Ibanez, Phys. Rev. D 84, 107501 (2011)

    Article  ADS  Google Scholar 

  31. L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Herrera, N.O. Santos, A. Wang, Phys. Rev. D 78, 084026 (2008)

    Article  ADS  Google Scholar 

  33. M. Sharif, G. Abbas, J. Phys. Soc. Jpn. 82, 034006 (2013)

    Article  ADS  Google Scholar 

  34. M. Sharif, G. Abbas, Chin. Phys. B 22, 030401 (2013)

    Article  ADS  Google Scholar 

  35. M. Sharif, G. Abbas, Eur. Phys. J. Plus 28, 10 (2013)

    Google Scholar 

  36. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

  37. F. Rahaman, R. Maulick, A.K. Yadav, S. Ray, R. Sharma, Gen. Relativ. Gravit. 44, 107 (2012)

    Article  ADS  Google Scholar 

  38. M. Kalam, F. Rahaman, S. Ray, Sk.M. Hossein, I. Karar, J. Naskar, Eur. Phys. J. C 72, 2248 (2012)

    Article  ADS  Google Scholar 

  39. S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Eur. Phys. J. C 76, 693 (2016)

    Article  ADS  Google Scholar 

  40. S.K. Maurya, D. Deb, S. Ray, P.K.F. Kuhfittig, arXiv:1703.08436

  41. K.D. Krori, J. Barua, J. Phys. A.: Math. Gen. 8, 508 (1975)

    Article  ADS  Google Scholar 

  42. P. Bhar, Astrophys. Space Sci. 356, 309 (2015)

    Article  ADS  Google Scholar 

  43. H. Andreasson, Commun. Math. Phys. 288, 715 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  45. M.K. Mak, T. Harko, Proc. R. Soc. A 459, 393 (2003)

    Article  ADS  Google Scholar 

  46. N. Straumann, General Relativity and Relativistic Astrophysics (Springer Verlag, Berlin, 1984)

    Book  Google Scholar 

  47. C.G. Bohmer, T. Harko, Gen. Relativ. Gravit. 39, 757 (2007)

    Article  ADS  Google Scholar 

  48. C.G. Bohmer, T. Harko, Class. Quantum Grav. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  49. B.V. Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Abbas.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, G., Shahzad, M.R. A new model of quintessence compact stars in the Rastall theory of gravity. Eur. Phys. J. A 54, 211 (2018). https://doi.org/10.1140/epja/i2018-12642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12642-y

Navigation