Skip to main content

Advertisement

SpringerLink
  • The European Physical Journal A
  • Journal Aims and Scope
  • Submit to this journal
Euclidean correlators at imaginary spatial momentum and their relation to the thermal photon emission rate
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Thermalization, viscosity and the averaged null energy condition

04 October 2018

Luca V. Delacrétaz, Thomas Hartman, … Aitor Lewkowycz

The force-force-correlator in hot QCD perturbatively and from the lattice

08 February 2022

Jacopo Ghiglieri, Guy D. Moore, … Niels Schlusser

Hydrodynamic effective field theory and the analyticity of hydrostatic correlators

23 February 2021

Akash Jain, Pavel Kovtun, … Ashish Shukla

Universality aspects of quantum corrections to transverse momentum broadening in QCD media

02 September 2022

Paul Caucal & Yacine Mehtar-Tani

Thermal State with Quadratic Interaction

16 November 2018

Nicolò Drago

Thermal Ionization for Short-Range Potentials

08 January 2021

David Hasler & Oliver Siebert

Role of the Electromagnetic Vacuum in the Transition from Classical to Quantum Mechanics

26 July 2022

Ana María Cetto & Luis de la Peña

Momentum distribution and correlation for a free scalar field in the Tsallis nonextensive statistics based on density operator

04 October 2018

Masamichi Ishihara

The eikonal operator at arbitrary velocities I: the soft-radiation limit

07 July 2022

Paolo Di Vecchia, Carlo Heissenberg, … Gabriele Veneziano

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 19 November 2018

Euclidean correlators at imaginary spatial momentum and their relation to the thermal photon emission rate

  • Harvey B. Meyer1 

The European Physical Journal A volume 54, Article number: 192 (2018) Cite this article

  • 277 Accesses

  • 4 Citations

  • 1 Altmetric

  • Metrics details

Abstract.

The photon emission rate of a thermally equilibrated system is determined by the imaginary part of the in-medium retarded correlator of the electromagnetic current transverse to the spatial momentum of the photon. In a Lorentz-covariant theory, this correlator can be parametrized by a scalar function \(\mathcal{G}_R(u\cdot \mathcal{K},\mathcal{K}^{2})\), where u is the fluid four-velocity and \(\mathcal{K}\) corresponds to the momentum of the photon. We propose to compute the analytic continuation of \( \mathcal{G}_R(u\cdot \mathcal{K},\mathcal{K}^{2})\) at fixed, vanishing virtuality \( \mathcal{K}^{2}\), to imaginary values of the first argument, \( u\cdot \mathcal{K} = i\omega_{n}\). At these kinematics, the retarded correlator is equal to the Euclidean correlator \( G_{E}(\omega_{n},k=i\omega_{n})\), whose first argument is the Matsubara frequency and the second is the spatial momentum. The Euclidean correlator, which is directly accessible in lattice QCD simulations, must be given an imaginary spatial momentum in order to realize the photon on-shell condition. Via a once-subtracted dispersion relation that we derive in a standard way at fixed \( \mathcal{K}^{2}=0\), the Euclidean correlator with imaginary spatial momentum is related to the photon emission rate. The relation allows for a more direct probing of the real-photon emission rate of the quark-gluon plasma in lattice QCD than the dispersion relations which have been used so far, the latter being at fixed spatial photon momentum k and thus involving all possible virtualities of the photon.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Braun-Munzinger, V. Koch, T. Schaefer, J. Stachel, Phys. Rep. 621, 76 (2016) arXiv:1510.0044

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Campbell, Nucl. Phys. A 967, 177 (2017) arXiv:1704.0630

    Article  ADS  Google Scholar 

  3. T. Asaka, M. Laine, M. Shaposhnikov, JHEP 06, 053 (2006) arXiv:hep-ph/0605209

    Article  ADS  Google Scholar 

  4. R. Adhikari, A white paper on kev sterile neutrino dark matter, arXiv:1602.0481

  5. P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 12, 009 (2001) arXiv:hep-ph/0111107

    Article  ADS  Google Scholar 

  6. J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G.D. Moore et al., JHEP 05, 010 (2013) arXiv:1302.5970

    Article  ADS  Google Scholar 

  7. D.T. Son, A.O. Starinets, JHEP 09, 042 (2002) arXiv:hep-th/0205051

    Article  ADS  Google Scholar 

  8. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618

  9. P.M. Hohler, R. Rapp, Phys. Lett. B 731, 103 (2014) arXiv:1311.2921

    Article  ADS  Google Scholar 

  10. R. Rapp, H. van Hees, Eur. Phys. J. A 52, 257 (2016) arXiv:1608.0527

    Article  ADS  Google Scholar 

  11. Y. Hidaka, S. Lin, R.D. Pisarski, D. Satow, JHEP 10, 005 (2015) arXiv:1504.0177

    Article  ADS  Google Scholar 

  12. C. Gale, Y. Hidaka, S. Jeon, S. Lin, J.-F. Paquet, R.D. Pisarski, D. Satow, V.V. Skokov, G. Vujanovic, Phys. Rev. Lett. 114, 072301 (2015) arXiv:1409.4778

    Article  ADS  Google Scholar 

  13. J.-F. Paquet, C. Shen, G.S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016) arXiv:1509.0673

    Article  ADS  Google Scholar 

  14. R.-A. Tripolt, C. Jung, N. Tanji, L. von Smekal, J. Wambach, In-medium spectral functions and dilepton rates with the Functional Renormalization Group, in 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018) Venice, Italy, May 14–19, 2018 (Elsevier, 2018) arXiv:1807.0495

  15. J. Ghiglieri, O. Kaczmarek, M. Laine, F. Meyer, Phys. Rev. D 94, 016005 (2016) arXiv:1604.0754

    Article  ADS  Google Scholar 

  16. B.B. Brandt, A. Francis, B. Jäger, H.B. Meyer, Phys. Rev. D 93, 054510 (2016) arXiv:1512.0724

    Article  ADS  Google Scholar 

  17. G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, J.-I. Skullerud, JHEP 02, 186 (2015) arXiv:1412.6411

    Article  ADS  Google Scholar 

  18. B. Brandt, A. Francis, M. Laine, H. Meyer, JHEP 05, 117 (2014) arXiv:1404.2404

    Article  ADS  Google Scholar 

  19. L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985)

    Article  ADS  Google Scholar 

  20. S. Caron-Huot, Phys. Rev. D 79, 065039 (2009) arXiv:0811.1603

    Article  ADS  Google Scholar 

  21. M. Panero, K. Rummukainen, A. Schaefer, Phys. Rev. Lett. 112, 162001 (2014) arXiv:1307.5850

    Article  ADS  Google Scholar 

  22. X.-d. Ji, C.-w. Jung, Phys. Rev. Lett. 86, 208 (2001) arXiv:hep-lat/0101014

    Article  ADS  Google Scholar 

  23. A.J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P.E.L. Rakow, G. Schierholz, A. Schiller, K. Somfleth, R.D. Young, J.M. Zanotti, Phys. Rev. Lett. 118, 242001 (2017) arXiv:1703.0115

    Article  ADS  Google Scholar 

  24. J.J. Dudek, R.G. Edwards, Phys. Rev. Lett. 97, 172001 (2006) arXiv:hep-ph/0607140

    Article  ADS  Google Scholar 

  25. X. Feng, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko et al., Phys. Rev. Lett. 109, 182001 (2012) arXiv:1206.1375

    Article  ADS  Google Scholar 

  26. A. Gérardin, H.B. Meyer, A. Nyffeler, Phys. Rev. D 94, 074507 (2016) arXiv:1607.0817

    Article  ADS  Google Scholar 

  27. B.B. Brandt, A. Francis, T. Harris, H.B. Meyer, A. Steinberg, EPJ Web of Conferences 175, 07044 (2018) arXiv:1710.0705

    Article  Google Scholar 

  28. H.B. Meyer, Eur. Phys. J. A 47, 86 (2011) arXiv:1104.3708

    Article  ADS  Google Scholar 

  29. S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, 1995)

  30. J. Hong, D. Teaney, Phys. Rev. C 82, 044908 (2010) arXiv:1003.0699

    Article  ADS  Google Scholar 

  31. G. Cuniberti, E. De Micheli, G.A. Viano, Commun. Math. Phys. 216, 59 (2001)

    Article  ADS  Google Scholar 

  32. F. Ferrari, Nucl. Phys. B 909, 880 (2016) arXiv:1602.0735

    Article  ADS  Google Scholar 

  33. P. Aurenche, F. Gelis, G. Moore, H. Zaraket, JHEP 12, 006 (2002) arXiv:hep-ph/0211036

    Article  ADS  Google Scholar 

  34. M. Lüscher, S. Sint, R. Sommer, P. Weisz, U. Wolff, Nucl. Phys. B 491, 323 (1997) arXiv:hep-lat/9609035

    Article  ADS  Google Scholar 

  35. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, 2006) p. 428

  36. P.K. Kovtun, A.O. Starinets, Phys. Rev. D 72, 086009 (2005) arXiv:hep-th/0506184

    Article  ADS  Google Scholar 

  37. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets, L.G. Yaffe, JHEP 12, 015 (2006) arXiv:hep-th/0607237

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, D-55099, Mainz, Germany

    Harvey B. Meyer

Authors
  1. Harvey B. Meyer
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Harvey B. Meyer.

Additional information

Communicated by D. Blaschke

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, H.B. Euclidean correlators at imaginary spatial momentum and their relation to the thermal photon emission rate. Eur. Phys. J. A 54, 192 (2018). https://doi.org/10.1140/epja/i2018-12633-0

Download citation

  • Received: 06 July 2018

  • Accepted: 04 October 2018

  • Published: 19 November 2018

  • DOI: https://doi.org/10.1140/epja/i2018-12633-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.