Skip to main content
Log in

Comprehensive study of observables in Compton scattering on the nucleon

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We present an analysis of 13 observables in Compton scattering on the proton. Cross sections, asymmetries with polarised beam and/or targets, and polarisation-transfer observables are investigated for energies up to the \(\Delta(1232)\) resonance to determine their sensitivity to the proton’s dipole scalar and spin polarisabilities. The Chiral Effective Field Theory Compton amplitude we use is complete at N4LO, \(\mathcal{O}(e^{2}\delta^{4})\), for photon energies \( \omega\sim m_{\pi}\), and so has an accuracy of a few per cent there. At photon energies in the resonance region, it is complete at NLO, \(\mathcal{O}(e^{2}\delta^{0})\), and so its accuracy there is about 20%. We find that for energies from pion-production threshold to about 250 MeV, multiple asymmetries have significant sensitivity to presently ill-determined combinations of proton spin polarisabilities. We also argue that the broad outcomes of this analysis will be replicated in complementary theoretical approaches, e.g., dispersion relations. Finally, we show that below the pion-production threshold, 6 observables suffice to reconstruct the Compton amplitude, and above it 11 are required. Although not necessary for polarisability extractions, this opens the possibility to perform “complete” Compton-scattering experiments. An interactive Mathematica notebook, including results for the neutron, is available from judith.mcgovern@manchester.ac.uk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Prange, Phys. Rev. 110, 240 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  2. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Eur. Phys. J. A 52, 139 (2016) arXiv:1511.01952 [nucl-th]

    Article  ADS  Google Scholar 

  3. D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rep. 378, 99 (2003) arXiv:hep-ph/0212124

    Article  ADS  Google Scholar 

  4. J.A. McGovern, D.R. Phillips, H.W. Grießhammer, Eur. Phys. J. A 49, 12 (2013) arXiv:1210.4104 [nucl-th]

    Article  ADS  Google Scholar 

  5. V. Lensky, J.A. McGovern, Phys. Rev. C 89, 032202 (2014) arXiv:1401.3320 [nucl-th]

    Article  ADS  Google Scholar 

  6. B. Pasquini, P. Pedroni, S. Sconfietti, arXiv:1711.07401 [hep-ph]

  7. COMPTON@MAX-lab Collaboration (L.S. Myers et al.), Phys. Rev. Lett. 113, 262506 (2014) arXiv:1409.3705 [nucl-ex]

    Article  ADS  Google Scholar 

  8. A2 Collaboration (P.P. Martel et al.), Phys. Rev. Lett. 114, 112501 (2015) arXiv:1408.1576 [nucl-ex]

    Article  ADS  Google Scholar 

  9. A2 Collaboration (V. Sokhoyan et al.), Eur. Phys. J. A 53, 14 (2017) arXiv:1611.03769 [nucl-ex]

    Article  Google Scholar 

  10. H.W. Grießhammer, A.I. L’vov, J.A. McGovern, V. Pascalutsa, B. Pasquini, D.R. Phillips, arXiv:1409.1512 [nucl-th]

  11. D. Babusci, G. Giordano, A.I. L’vov, G. Matone, A.M. Nathan, Phys. Rev. C 58, 1013 (1998) arXiv:hep-ph/9803347

    Article  ADS  Google Scholar 

  12. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 20, 329 (2004) arXiv:nucl-th/0308054

    Article  ADS  Google Scholar 

  13. R.P. Hildebrandt, PhD Thesis, Technische Universität München (2005) arXiv:nucl-th/0512064

  14. B. Pasquini, D. Drechsel, M. Vanderhaeghen, Phys. Rev. C 76, 015203 (2007) arXiv:0705.0282 [hep-ph]

    Article  ADS  Google Scholar 

  15. P. Martel, PhD Thesis, University of Massachusetts, Amherst (2012) https://wwwa2.kph.uni-mainz.de/images/publications/phd/pmartel_dis.pdf

  16. C. Collicott, PhD Thesis, Dalhousie University (2015) https://wwwa2.kph.uni-mainz.de/images/publications/phd/thesis_Collicott-Cristina-2015.pdf

  17. G.M. Huber, C. Collicott, arXiv:1508.07919 [nucl-ex]

  18. A2 Collaboration (P. Martel et al.), EPJ Web of Conferences 142, 01021 (2017)

    Article  Google Scholar 

  19. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, AIP Conf. Proc. 1735, 040010 (2016) arXiv:1509.09177 [nucl-th]

    Article  Google Scholar 

  20. J. McGovern, H. Grießhammer, D. Phillips, PoS CD 15, 024 (2015)

    Google Scholar 

  21. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004) arXiv:nucl-th/0307070

    Article  ADS  Google Scholar 

  22. V. Lensky, J. McGovern, V. Pascalutsa, Eur. Phys. J. C 75, 604 (2015) arXiv:1510.02794 [hep-ph]

    Article  ADS  Google Scholar 

  23. B.R. Holstein, D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rev. C 61, 034316 (2000) arXiv:hep-ph/9910427

    Article  ADS  Google Scholar 

  24. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012) arXiv:1203.6834 [nucl-th]

    Article  ADS  Google Scholar 

  25. V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024

    Article  ADS  Google Scholar 

  26. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  27. V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007) arXiv:hep-ph/0609004

    Article  ADS  Google Scholar 

  28. L.W. Cawthorne, J.A. McGovern, PoS CD 15, 072 (2016) arXiv:1510.09136 [nucl-th]

    Google Scholar 

  29. H.W. Grießhammer, T.R. Hemmert, Phys. Rev. C 65, 045207 (2002) arXiv:nucl-th/0110006

    Article  ADS  Google Scholar 

  30. H.W. Griesshammer, Prog. Part. Nucl. Phys. 55, 215 (2005) arXiv:nucl-th/0411080

    Article  ADS  Google Scholar 

  31. N. Krupina, V. Lensky, V. Pascalutsa, arXiv:1712.05349 [nucl-th]

  32. V. Lensky, V. Pascalutsa, Eur. Phys. J. C 65, 195 (2010) arXiv:0907.0451 [hep-ph]

    Article  ADS  Google Scholar 

  33. B. Pasquini, private communication

  34. B. Strandberg, A. Margaryan, H.W. Grießhammer, J.A. McGovern, D.R. Phillips, D. Shukla, in preparation

  35. H.W. Grießhammer, Eur. Phys. J. A 49, 100 (2013) 53

    Article  ADS  Google Scholar 

  36. G.G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972)

    Article  ADS  Google Scholar 

  37. M.H. Sikora et al., Phys. Rev. Lett. 112, 022501 (2014) arXiv:1309.7897 [nucl-ex]

    Article  ADS  Google Scholar 

  38. M. Ahmed, private communication (2017)

  39. G. Blanpied, M. Blecher, A. Caracappa, R. Deininger, C. Djalali, G. Giordano, K. Hicks, S. Hoblit et al., Phys. Rev. C 64, 025203 (2001)

    Article  ADS  Google Scholar 

  40. J.D. Jackson, Classical Electrodynamics (Wiley, 1998)

  41. O. Gryniuk, F. Hagelstein, V. Pascalutsa, Phys. Rev. D 92, 074031 (2015) arXiv:1508.07952 [nucl-th]

    Article  ADS  Google Scholar 

  42. O. Gryniuk, F. Hagelstein, V. Pascalutsa, Phys. Rev. D 94, 034043 (2016) arXiv:1604.00789 [nucl-th]

    Article  ADS  Google Scholar 

  43. V. Olmos de Leon et al., Eur. Phys. J. A 10, 207 (2001)

    Article  ADS  Google Scholar 

  44. B. Pasquini, P. Pedroni, D. Drechsel, Phys. Lett. B 687, 160 (2010) arXiv:1001.4230 [hep-ph]

    Article  ADS  Google Scholar 

  45. N. Krupina, V. Pascalutsa, Phys. Rev. Lett. 110, 262001 (2013) arXiv:1304.7404 [nucl-th]

    Article  ADS  Google Scholar 

  46. V. Pascalutsa, D.R. Phillips, Phys. Rev. C 68, 055205 (2003) arXiv:nucl-th/0305043

    Article  ADS  Google Scholar 

  47. M.I. Levchuk, A.I. L’vov, V.A. Petrun’kin, Few-Body Syst. 16, 101 (1994)

    Article  ADS  Google Scholar 

  48. M.I. Levchuk, A.I. L’vov, Nucl. Phys. A 674, 449 (2000) arXiv:nucl-th/9909066

    Article  ADS  Google Scholar 

  49. B. Demissie, H.W. Grießhammer, PoS CD 15, 097 (2016)

    Google Scholar 

  50. H. Arenhovel, W. Leidemann, E.L. Tomusiak, Nucl. Phys. A 641, 517 (1998) arXiv:nucl-th/9806017

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald W. Grießhammer.

Additional information

Communicated by Shi-Lin Zhu

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grießhammer, H.W., McGovern, J.A. & Phillips, D.R. Comprehensive study of observables in Compton scattering on the nucleon. Eur. Phys. J. A 54, 37 (2018). https://doi.org/10.1140/epja/i2018-12467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12467-8

Navigation