Skip to main content
Log in

Elastic Compton scattering from 3He and the role of the Delta

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We report observables for elastic Compton scattering from 3He in Chiral Effective Field Theory with an explicit \( \Delta(1232)\) degree of freedom ( \( \chi\) EFT) for energies between 50 and 120MeV. The \( \gamma\) 3He amplitude is complete at N \( ^{3}\) LO, \( {O}(\mathrm{e}^2\delta^3)\) , and in general converges well order by order. It includes the dominant pion-loop and two-body currents, as well as the Delta excitation in the single-nucleon amplitude. Since the cross section is two to three times that for deuterium and the spin of polarised 3He is predominantly carried by its constituent neutron, elastic Compton scattering promises information on both the scalar and spin polarisabilities of the neutron. We study in detail the sensitivities of 4 observables to the neutron polarisabilities: the cross section, the beam asymmetry and two double asymmetries resulting from circularly polarised photons and a longitudinally or transversely polarised target. Including the Delta enhances those asymmetries from which neutron spin polarisabilities could be extracted. We also correct previous, erroneous results at N \( ^{2}\) LO, i.e. without an explicit Delta, and compare to the same observables on proton, neutron and deuterium targets. An interactive Mathematica notebook of our results is available from hgrie@gwu.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Choudhury, PhD Thesis, Ohio University (2006) http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1163711618

  2. D. Choudhury, A. Nogga, D.R. Phillips, Phys. Rev. Lett. 98, 232303 (2007) arXiv:nucl-th/0701078

    Article  ADS  Google Scholar 

  3. D. Shukla, A. Nogga, D.R. Phillips, Nucl. Phys. A 819, 98 (2009) arXiv:0812.0138 [nucl-th]

    Article  ADS  Google Scholar 

  4. D. Shukla, A. Nogga, D.R. Phillips, Phys. Rev. Lett. 120, 249901 (2018) arXiv:1804.01206 [nucl-th]

    Article  ADS  Google Scholar 

  5. H. Weller, M. Ahmed, G. Feldman, J. Mueller, L. Myers, M. Sikora, W. Zimmerman, PoS CD 12, 112 (2013)

    Google Scholar 

  6. J.R.M. Annand, B. Strandberg, H.-J. Arends, A. Thomas, E. Downie, D. Hornidge, M. Thomas, V. Sokoyan, PoS CD 15, 092 (2015)

    Google Scholar 

  7. Programme-Advisory Committee Reports 2009 to 2017, with list of approved experiments at www.tunl.duke.edu/higs/experiments/approved/

  8. M. Ahmed, C.R. Howell, H.R. Weller, private communication (2017)

  9. J.R.M. Annand, W. Briscoe, E.J. Downie, private communication (2017)

  10. V. Bernard, N. Kaiser, U.G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995) arXiv:hep-ph/9501384

    Article  ADS  Google Scholar 

  11. V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008) arXiv:0706.0312 [hep-ph]

    Article  ADS  Google Scholar 

  12. S. Scherer, M.R. Schindler, Lecture Notes in Physics, Vol. 830 (Springer-Verlag, Berlin, Heidelberg, 2012)k

  13. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002) arXiv:nucl-th/0203055

    Article  ADS  Google Scholar 

  14. E. Epelbaum, arXiv:1001.3229 [nucl-th]

  15. R. Machleidt, F. Sammarruca, Phys. Scr. 91, 083007 (2016) arXiv:1608.05978 [nucl-th]

    Article  ADS  Google Scholar 

  16. E.E. Jenkins, A.V. Manohar, in Dobogokoe 1991, Proceedings, Effective field theories of the standard model, p. 113 and Calif. Univ. San Diego -- UCSD-PTH 91-30

  17. T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Lett. B 395, 89 (1997) arXiv:hep-ph/9606456

    Article  ADS  Google Scholar 

  18. T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G 24, 1831 (1998) arXiv:hep-ph/9712496

    Article  ADS  Google Scholar 

  19. V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024

    Article  ADS  Google Scholar 

  20. R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015) arXiv:1506.01343 [nucl-th]

    Article  ADS  Google Scholar 

  21. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Eur. Phys. J. A 52, 139 (2016) arXiv:1511.01952 [nucl-th]

    Article  ADS  Google Scholar 

  22. V. Bernard, N. Kaiser, U.G. Meißner, Phys. Rev. Lett. 67, 1515 (1991)

    Article  ADS  Google Scholar 

  23. S.R. Beane, M. Malheiro, D.R. Phillips, U. van Kolck, Nucl. Phys. A 656, 367 (1999) arXiv:nucl-th/9905023

    Article  ADS  Google Scholar 

  24. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004) arXiv:nucl-th/0307070

    Article  ADS  Google Scholar 

  25. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, D.R. Phillips, Nucl. Phys. A 748, 573 (2005) arXiv:nucl-th/0405077

    Article  ADS  Google Scholar 

  26. R.P. Hildebrandt, PhD Thesis, Technische Universität München (2005) arXiv:nucl-th/0512064

  27. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 46, 111 (2010) arXiv:nucl-th/0512063

    Article  ADS  Google Scholar 

  28. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  29. S. Weinberg, Phys. Lett. B 295, 114 (1992) arXiv:hep-ph/9209257

    Article  ADS  Google Scholar 

  30. D.R. Phillips, Annu. Rev. Nucl. Part. Sci. 66, 421 (2016)

    Article  ADS  Google Scholar 

  31. COMPTON@MAX-lab Collaboration (L.S. Myers et al.), Phys. Rev. Lett. 113, 262506 (2014) arXiv:1409.3705 [nucl-ex]

    Article  ADS  Google Scholar 

  32. L.S. Myers et al., Phys. Rev. C 92, 025203 (2015) arXiv:1503.08094 [nucl-ex]

    Article  ADS  Google Scholar 

  33. V. Olmos de León et al., Eur. Phys. J. A 10, 207 (2001)

    Article  ADS  Google Scholar 

  34. M.I. Levchuk, A.I. L’vov, Nucl. Phys. A 674, 449 (2000) arXiv:nucl-th/9909066

    Article  ADS  Google Scholar 

  35. K. Kossert, M. Camen, F. Wissmann, J. Ahrens, J.R.M. Annand, H.J. Arends, R. Beck, G. Caselotti et al., Eur. Phys. J. A 16, 259 (2003) arXiv:nucl-ex/0210020

    Article  ADS  Google Scholar 

  36. B. Demissie, H.W. Grießhammer, PoS CD 15, 097 (2016) arXiv:1612.07351 [nucl-th]

    Google Scholar 

  37. B. Demissie, PhD Thesis, George Washington University (2017) https://search.proquest.com/docview/2029153446/141192324D4D47E2PQ/

  38. G. Feldman et al., PoS CD 15, 074 (2015)

    Google Scholar 

  39. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Deuteron Compton Scattering and Neutron Polarisabilities at $\calO(e^2\delta^4)$ in $\chi$EFT, in preparation

  40. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012) arXiv:1203.6834 [nucl-th]

    Article  ADS  Google Scholar 

  41. J.A. McGovern, D.R. Phillips, H.W. Grießhammer, Eur. Phys. J. A 49, 12 (2013) arXiv:1210.4104 [nucl-th]

    Article  ADS  Google Scholar 

  42. O. Gryniuk, F. Hagelstein, V. Pascalutsa, Phys. Rev. D 92, 074031 (2015) arXiv:1508.07952 [nucl-th]

    Article  ADS  Google Scholar 

  43. B.R. Holstein, arXiv:hep-ph/0010129

  44. H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Eur. Phys. J. A 54, 37 (2018) arXiv:1711.11546 [nucl-th]

    Article  ADS  Google Scholar 

  45. A2 Collaboration (P.P. Martel et al.), Phys. Rev. Lett. 114, 112501 (2015) arXiv:1408.1576 [nucl-ex]

    Article  ADS  Google Scholar 

  46. D. Choudhury, D.R. Phillips, Phys. Rev. C 71, 044002 (2005) arXiv:nucl-th/0411001

    Article  ADS  Google Scholar 

  47. H.W. Grießhammer, D. Shukla, Eur. Phys. J. A 46, 249 (2010) 48

    Article  ADS  Google Scholar 

  48. H.W. Grießhammer, Eur. Phys. J. A 49, 100 (2013) 53

    Article  ADS  Google Scholar 

  49. H.W. Grießhammer, Eur. Phys. J. A 54, 57 (2018) arXiv:1304.6594 [nucl-th]

    Article  ADS  Google Scholar 

  50. H.W. Grießhammer, A. Margaryan, J.A. McGovern, D.R. Phillips, in preparation

  51. T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Rev. D 55, 5598 (1997) arXiv:hep-ph/9612374

    Article  ADS  Google Scholar 

  52. T.R. Hemmert, B.R. Holstein, J. Kambor, G. Knochlein, Phys. Rev. D 57, 5746 (1998) arXiv:nucl-th/9709063

    Article  ADS  Google Scholar 

  53. S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Nucl. Phys. A 747, 311 (2005) arXiv:nucl-th/0403088

    Article  ADS  Google Scholar 

  54. S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, R.B. Wiringa, Phys. Rev. C 80, 034004 (2009) arXiv:0906.1800 [nucl-th]

    Article  ADS  Google Scholar 

  55. S. Kölling, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 80, 045502 (2009) arXiv:0907.3437 [nucl-th]

    Article  ADS  Google Scholar 

  56. S. Kölling, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054008 (2011) arXiv:1107.0602 [nucl-th]

    Article  ADS  Google Scholar 

  57. V.V. Kotlyar, H. Kamada, W. Gloeckle, J. Golak, Few Body Syst. 28, 35 (2000) arXiv:nucl-th/9903079

    Article  ADS  Google Scholar 

  58. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003) arXiv:nucl-th/0304018

    Article  ADS  Google Scholar 

  59. U. van Kolck, Phys. Rev. C 49, 2932 (1994)

    Article  ADS  Google Scholar 

  60. A. Nogga, P. Navratil, B.R. Barrett, J.P. Vary, Phys. Rev. C 73, 064002 (2006) arXiv:nucl-th/0511082

    Article  ADS  Google Scholar 

  61. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995) arXiv:nucl-th/9408016

    Article  ADS  Google Scholar 

  62. B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995) arXiv:nucl-th/9502031

    Article  ADS  Google Scholar 

  63. A. Nogga, D. Huber, H. Kamada, W. Gloeckle, Phys. Lett. B 409, 19 (1997) arXiv:nucl-th/9704001

    Article  ADS  Google Scholar 

  64. A. Nogga, private communication (2007)

  65. D.R. Phillips, PoS CD 12, 013 (2013) arXiv:1302.5959 [nucl-th]

    Google Scholar 

  66. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017) arXiv:1607.04623 [nucl-th]

    Article  ADS  Google Scholar 

  67. H. Arenhövel, M. Sanzone, Few Body Syst. Suppl. 3, 1 (1991)

    Article  Google Scholar 

  68. H. Arenhövel, Int. J. Mod. Phys. E 18, 1226 (2009) arXiv:0804.2559 [nucl-th]

    Article  ADS  Google Scholar 

  69. H. Paetz gen. Schieck, Nuclear Physics with Polarized targets, Lect. Notes Phys. 842 (Springer, 2012)

  70. D. Babusci, G. Giordano, A.I. L’vov, G. Matone, A.M. Nathan, Phys. Rev. C 58, 1013 (1998) arXiv:hep-ph/9803347

    Article  ADS  Google Scholar 

  71. M.E. Rose, Elementary Theory of Angular Momentum (Wiley, 1957)

  72. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  73. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 20, 329 (2004) arXiv:nucl-th/0308054

    Article  ADS  Google Scholar 

  74. V. Lensky, V. Pascalutsa, Pisma Zh. Eksp. Teor. Fiz. 89, 127 (2009) JETP Lett. 89

    Google Scholar 

  75. J.D. Jackson, Classical Electrodynamics (Wiley, 1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Margaryan.

Additional information

Communicated by V. Somà

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margaryan, A., Strandberg, B., Grießhammer, H.W. et al. Elastic Compton scattering from 3He and the role of the Delta. Eur. Phys. J. A 54, 125 (2018). https://doi.org/10.1140/epja/i2018-12554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12554-x

Navigation