Skip to main content

Advertisement

SpringerLink
  1. Home
  2. The European Physical Journal A
  3. Article
Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Accessing tens-to-hundreds femtoseconds nuclear state lifetimes with low-energy binary heavy-ion reactions

03 May 2021

M. Ciemała, S. Ziliani, … M. Zielińska

GRIDSA: femtosecond lifetime measurements with germanium detector arrays

21 March 2020

F. C. L. Crespi, N. Cieplicka-Oryńczak, … S. Ziliani

Lifetime measurements of yrast states in $$^{\mathbf {178}}$$ 178 Pt using the charge plunger method with a recoil separator

16 April 2021

J. Heery, L. Barber, … G. Zimba

New measurements of gamma-ray energies and their absolute intensities from the decay of 231Pa

19 May 2020

Kelly N. Kmak, Dawn A. Shaughnessy & Jasmina Vujic

Lifetime measurements in $$^{182}\hbox {Pt}$$ 182 Pt using $$\gamma $$ γ – $$\gamma $$ γ fast-timing

29 May 2021

G. Häfner, A. Esmaylzadeh, … K.-O. Zell

A novel method for the measurement of half-lives and decay branching ratios of exotic nuclei

04 September 2019

Ivan Miskun, Timo Dickel, … For the Super-FRS Experiment Collaboration

Precision Measurements of Internal Conversion Coefficients of Low Energy Transitions in $${}^{169}$$ Tm for Efficiency Calibration of Electron Detectors

01 November 2020

K. Vijay Sai, K. Madhusudhana Rao, … Venkataramaniah Kamisetti

High-precision measurements of half‐lives for 69Ge, 73Se, 83Sr, 85mSr, and 63Zn radionuclides relevant to the astrophysical p-process via photoactivation at the Madison Accelerator Laboratory

25 January 2021

T. A. Hain, S. J. Pendleton, … A. Banu

Confirming band assignments in 167ytterbium with gamma-gamma-electron triple-coincidence spectroscopy

10 January 2019

J. Smallcombe, P. J. Davies, … J. Uusitalo

Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 27 October 2017

Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

  • M. Doncel1,2,3,
  • A. Gadea4,
  • J. J. Valiente-Dobón5,
  • B. Quintana1,
  • V. Modamio5,6,
  • D. Mengoni7,8,
  • O. Möller9,
  • A. Dewald10 &
  • …
  • N. Pietralla9 

The European Physical Journal A volume 53, Article number: 211 (2017) Cite this article

  • 489 Accesses

  • 2 Citations

  • Metrics details

Abstract.

The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unsifted peak ratio method. The technique has been validated using data measured with the \( \gamma\) -ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T.K. Alexander, J.S. Foster, Adv. Nucl. Phys. 10, 197 (1978)

    Article  Google Scholar 

  2. A. Dewald, S. Harissopulos, P. Brentano, Z. Phys. A 334, 163 (1989)

    ADS  Google Scholar 

  3. A. Dewald et al., Prog. Part. Nucl. Phys. 67, 786 (2012)

    Article  ADS  Google Scholar 

  4. A. Gadea et al., Acta. Phys. Pol. B 38, 1311 (2007)

    ADS  Google Scholar 

  5. S. Silzner et al., Phys. Rev. C 76, 024604 (2007)

    Article  ADS  Google Scholar 

  6. J.J. Valiente-Dobón et al., Phys. Rev. Lett. 102, 242502 (2009)

    Article  ADS  Google Scholar 

  7. D. Mengoni et al., Phys. Rev. C 82, 024308 (2010)

    Article  ADS  Google Scholar 

  8. C. Louchart et al., Phys. Rev. C 87, 054302 (2013)

    Article  ADS  Google Scholar 

  9. V. Modamio et al., Phys. Rev. C 88, 044326 (2013)

    Article  ADS  Google Scholar 

  10. A. Gadea et al., Nucl. Instrum. Methods A 654, 88 (2011)

    Article  ADS  Google Scholar 

  11. S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)

    Article  ADS  Google Scholar 

  12. S.L. Shepherd et al., Nucl. Instrum. Methods A 434, 373 (1999)

    Article  ADS  Google Scholar 

  13. S. Pullanhiotan et al., Nucl. Instrum. Methods A 593, 343 (2008)

    Article  ADS  Google Scholar 

  14. J. Ljungvall et al., Phys. Rev. C 81, 061301 (2010)

    Article  ADS  Google Scholar 

  15. A. Dijon et al., Phys. Rev. C 83, 064321 (2011)

    Article  ADS  Google Scholar 

  16. A. Dewald et al., Phys. Rev. C 78, 051302(R) (2008)

    Article  ADS  Google Scholar 

  17. K. Starosta et al., Phys. Rev. Lett. 99, 042503 (2007)

    Article  ADS  Google Scholar 

  18. W. Rother et al., Phys. Rev. Lett. 106, 022502 (2011)

    Article  ADS  Google Scholar 

  19. W. Rother et al., Nucl. Instrum. Methods A 654, 196 (2011)

    Article  ADS  Google Scholar 

  20. P. Voss et al., Phys. Rev. C 86, 011303 (2012)

    Article  ADS  Google Scholar 

  21. M. Petri et al., Phys. Rev. C 86, 044329 (2012)

    Article  ADS  Google Scholar 

  22. H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)

    Article  ADS  Google Scholar 

  23. H. Geissel et al., Annu. Rev. Nucl. Part. Sci. 45, 163 (1995)

    Article  ADS  Google Scholar 

  24. D.J. Morrissey et al., Nucl. Instrum. Methods B 204, 90 (2003)

    Article  ADS  Google Scholar 

  25. D. Bazin et al., Nucl. Instrum. Methods B 204, 29 (2003)

    Article  Google Scholar 

  26. R. Lecomte et al., Phys. Rev. C 22, 2420 (1980)

    Article  ADS  Google Scholar 

  27. S. Leenhardt et al., Eur. Phys. J. A 14, 1 (2002)

    ADS  Google Scholar 

  28. M. Niikura et al., Phys. Rev. C 85, 054321 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca, Salamanca, Spain

    M. Doncel & B. Quintana

  2. Department of Physics, Royal Institute of Technology, SE-10691, Stockholm, Sweden

    M. Doncel

  3. Department of Physics, Oliver Lodge Laboratory, University of Liverpool, L69 7ZE, Liverpool, UK

    M. Doncel

  4. Istituto de Física Corpuscular, CSIC-University of Valencia, Valencia, Spain

    A. Gadea

  5. Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy

    J. J. Valiente-Dobón & V. Modamio

  6. University of Oslo, Oslo, Norway

    V. Modamio

  7. Dipartimento di Fisica e Astronomia dell’Università di Padova, Padova, Italy

    D. Mengoni

  8. Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy

    D. Mengoni

  9. Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany

    O. Möller & N. Pietralla

  10. Institut für Kernphysik der Universität zu Köln, Köln, Germany

    A. Dewald

Authors
  1. M. Doncel
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Gadea
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. J. J. Valiente-Dobón
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. B. Quintana
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. V. Modamio
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. D. Mengoni
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. O. Möller
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. A. Dewald
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. N. Pietralla
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to M. Doncel.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doncel, M., Gadea, A., Valiente-Dobón, J.J. et al. Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers. Eur. Phys. J. A 53, 211 (2017). https://doi.org/10.1140/epja/i2017-12382-6

Download citation

  • Received: 31 May 2017

  • Accepted: 08 September 2017

  • Published: 27 October 2017

  • DOI: https://doi.org/10.1140/epja/i2017-12382-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.