Advertisement

Charge distribution in the ternary fragmentation of 252Cf

  • M. T. Senthil Kannan
  • M. BalasubramaniamEmail author
Regular Article - Theoretical Physics

Abstract.

We present here, for the first time, a study on ternary fragmentation charge distribution of 252Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from \( A_3 = 16\) to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements \( A_1 + A_2 + A_3\) and \( A_1 + A_3 + A_2\) . The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted.

References

  1. 1.
    P. Fong, Phys. Rev. 102, 434 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    R.W. Hasse, Nucl. Phys. A 128, 609 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    M. Rajasekaran, V. Devanathan, Phys. Rev. C 24, 2606 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    P. Fong, Phys. Rev. C 3, 2025 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    H. Diehl, W. Greiner, Nucl. Phys. A 229, 29 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    A.R. Degheidy, J.A. Maruhn, Z. Phys. A 290, 205 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    V.A. Rubchenya, S.G. Yavshits, Z. Phys. A At. Nucl. 329, 217 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    M. Mutterer, J.P. Theobald, in Nuclear Decay Modes, edited by D.N. Poenaru (Institute of Physics Publishing, Bristol, 1996) Chapt. 12, p. 487Google Scholar
  10. 10.
    A. Sandulescu et al., J. Phys. G: Nucl. Part. Phys. 24, 181 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    A. Sandulescu, F. Carstoiu, I. Bulboaca, W. Greiner, Phys. Rev. C 60, 044613 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    D.N. Poenaru, W. Greiner, R.A. Gherghescu, At. Data Nucl. Data Tables 68, 91 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    D.N. Poenaru et al., J. Phys. G: Nucl. Part. Phys. 26, L97 (2000)CrossRefGoogle Scholar
  14. 14.
    D.N. Poenaru, R.A. Gherghescu, W. Greiner, Y. Nagame, J.H. Hamilton, A.V. Ramayya, Rom. Rep. Phys. 55, 549 (2003)Google Scholar
  15. 15.
    D.N. Poenaru, R.A. Gherghescu, W. Greiner, Nucl. Phys. A 747, 182 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    R.A. Gherghescu, D.N. Poenaru, W. Greiner, Int. J. Mod. Phys. E 17, 2221 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    I. Halpern, in Proceedings of the IAEA Symposium on the Physics and Chemistry of Fission, Salzburg 1965, Vol. 2 (International Atomic Energy Agency, Vienna, 1965) p. 369Google Scholar
  18. 18.
    A.V. Ramayya et al., Phys. Rev. Lett. 81, 947 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Ramayya et al., Phys. Rev. C 57, 2370 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    U. Köster et al., Nucl. Phys. A 652, 371 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    I. Tsekhanovich, Z. Buyukmumcu, M. Davi, H.O. Denschlag, F. Gnnenwein, S.F. Boulyga, Phys. Rev. C 67, 034610 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    F. Gonnenwein, Nucl. Phys. A 734, 213 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Lestone, Phys. Rev. C 70, 021601(R) (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Yu.V. Pyatkov et al., Eur. Phys. J. A 45, 29 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Yu.V. Pyatkov et al., Eur. Phys. J. A 48, 94 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    W. von Oertzen, A.K. Nasirov, Phys. Lett. B 734, 234 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Karpov, Phys. Rev. C 94, 064615 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    V.Yu. Denisov, N.A. Pilipenko, I.Yu. Sedykh, Phys. Rev. C 95, 014605 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    K. Manimaran, M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    K. Manimaran, M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    K. Manimaran, M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    K. Manimaran, M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    R.K. Gupta, Sov. J. Part. Nucl. 8, 289 (1977)Google Scholar
  34. 34.
    J.A. Maruhn, W. Greiner, W. Scheid, Heavy Ion Collisions, Vol. 2, edited by R. Bock (North Holland, Amsterdam, 1980) Chapt. 6Google Scholar
  35. 35.
    A. Sandulescu, D.N. Poenaru, W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980)Google Scholar
  36. 36.
    R.K. Gupta, in Heavy Elements and Related New Phenomena, Vol. II, edited by W. Greiner, R.K. Gupta (World Scientific, Singapore, 1999) p. 730Google Scholar
  37. 37.
    R.K. Gupta, W. Greiner, in Heavy Elements and Related New Phenomena, Vol. I, edited by W. Greiner, R.K. Gupta (World Scientific, Singapore, 1999) p. 536Google Scholar
  38. 38.
    M. Balasubramaniam, C. Karthikraj, N. Arunachalam, S. Selvaraj, Phys. Rev. C 90, 054611 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 91, 044616 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    M. Balasubramaniam, K.R. Vijayaraghavan, K. Manimaran, Phys. Rev. C 93, 014601 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 90, 024601 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    A.J. Cole, in Fundamental and Applied Nuclear Physics Series - Statistical Models for Nuclear Decay from Evaporation to Vaporization, edited by R.R. Betts, W. Greiner (Institute of Physics Publishing, Bristol and Philadelphia, 2000)Google Scholar
  43. 43.
    J.R. Huizenga, L.G. Moretto, Annu. Rev. Nucl. Sci. 22, 427 (1972)ADSCrossRefGoogle Scholar
  44. 44.
  45. 45.
    G. Audi et al., Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  46. 46.
    M.T. Senthilkannan, B. Kumar, M. Balasubramaniam et al., Phys. Rev. C 95, 064613 (2017)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations