Skip to main content
Log in

Charge specific baryon mass relations with deformed SUq(3) flavor symmetry

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 28 January 2019

This article has been updated

Abstract.

The quantum group \( SU_{q}(3) = U_{q}(su(3))\) is taken as a baryon flavor symmetry. Accounting for electromagnetic contributions to baryons masses up to zeroth order, new charge specific q-deformed octet and decuplet baryon mass formulas are obtained. These new mass relations have errors of only 0.02% and 0.08%, respectively, a factor of 20 reduction compared to the standard Gell-Mann-Okubo mass formulas. A new relation between the octet and decuplet baryon masses that is accurate to 1.2% is derived. An explicit formula for the Cabibbo angle, taken to be \(\frac{\pi}{14}\), in terms of the deformation parameter q and spin parity JP of the baryons is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 28 January 2019

    After publication of the paper, the author noticed that the acknowledgement section contained an error. The correction is given in this erratum.

  • 28 January 2019

    After publication of the paper, the author noticed that the acknowledgement section contained an error. The correction is given in this erratum.

References

  1. A.M. Gavrilik, N.Z. Iorgov, Quantum groups as flavor symmetries: account of nonpolynomial SU(3)-breaking effects in baryon masses, arXiv:hep-ph/9807559 (1998)

  2. A.M. Gavrilik, Nucl. Phys. B Proc. Suppl. 102, 298 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.M. Gavrilik, Quantum groups in hadron phenomenology, arXiv:hep-ph/9712411 (1997)

  4. G. Morpurgo, Phys. Rev. D 45, 1686 (1992)

    Article  ADS  Google Scholar 

  5. G. Morpurgo, Phys. Rev. Lett. 68, 139 (1992)

    Article  ADS  Google Scholar 

  6. G. Dillon, G. Morpurgo, Phys. Lett. B 481, 239 (2000)

    Article  ADS  Google Scholar 

  7. Michio Jimbo, Lett. Math. Phys. 10, 63 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  8. V.G. Drinfeld, Sov. Math. Dokl. 32, 254 (1985)

    Google Scholar 

  9. M. Jimbo, Lett. Math. Phys. 10, 63 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.J. Finkelstein, On q-Electroweak arXiv:hep-th/0110075 (2001)

  11. Robert J. Finkelstein, An $SLq(2)$ Extension of the Standard Model, arXiv:1205.1026 (2012)

  12. Harold Steinacker, Commun. Math. Phys. 192, 687 (1998)

    Article  Google Scholar 

  13. Daniel Sternheimer, The geometry of space-time and its deformations from a physical perspective, in From Geometry to Quantum Mechanics (Springer, 2007) pp. 287--301

  14. Shahn Majid, Henri Ruegg, Phys. Lett. B 334, 348 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jerzy Lukierski, Anatol Nowicki, Int. J. Mod. Phys. A 18, 7 (2003)

    Article  Google Scholar 

  16. Leonardo Castellani, Julius Wess, Quantum Groups and Their Applications in Physics, Vol. 127 (IOS Press, 1996)

  17. A.M. Gavrilik, Quantum algebras, particle phenomenology, and (quasi) supersymmetry, arXiv:hep-ph/0402082 (2004)

  18. A Carcamo, The Gell-Mann-Okubo and Colemann-Glashow relations for octet and decuplet baryons in the $SU_q (3)$ quantum algebra, arXiv:hep-ph/0511202 (2005)

  19. Murray Gell-Mann, The eightfold way: A theory of strong interaction symmetry, Technical report (California Inst. of Tech., Pasadena Synchrotron Lab., 1961)

  20. Susumu Okubo, Prog. Theor. Phys. 27, 949 (1962)

    Article  ADS  Google Scholar 

  21. S. Okubo, Phys. Lett. 4, 14 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Morpurgo, Phys. Rev. D 40, 2997 (1989)

    Article  ADS  Google Scholar 

  23. Alexandre Gavrilik, Can the Cabibbo mixing originate from noncommutative extra dimensions? in Noncommutative Structures in Mathematics and Physics (Springer, 2001) pp. 343--355

  24. R. Jaganathan, Some introductory notes on quantum groups, quantum algebras, and their applications, arXiv:math-ph/0105002 (2001)

  25. Christiane Quesne, J. Phys. A: Math. Gen. 25, 5977 (1992)

    Article  ADS  Google Scholar 

  26. Harold Steinacker, Commun. Math. Phys. 192, 687 (1998)

    Article  Google Scholar 

  27. A.M. Gavrilik, I.I. Kachurik, A.V. Tertychnyj, Representations of the $Uq(u(4,1))$ and a q-polynomial that determines baryon mass sum rules, arXiv:hep-ph/9504233 (1995)

  28. Keith A. Olive, Particle Data Group et al., Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  29. M. Gerstenhaber, Ann. Math. 79, 59 (1964)

    Article  MathSciNet  Google Scholar 

  30. A. Nijenhuis, R.W. Richardson, J. Math. Mech. 17, 89 (1967)

    MathSciNet  Google Scholar 

  31. R.V. Mendes, J. Phys. A: Math. Gen. 27, 8091 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.V. Ahluwalia, N.G. Gresnigt, A.B. Nielsen, D. Schritt, T.F. Watson, Int. J. Mod. Phys. D 17, 495 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. C. Chryssomalakos, E. Okon, Int. J. Mod. Phys. D 13, 2003 (2004) arXiv:hep-th/0407080

    Article  ADS  MathSciNet  Google Scholar 

  34. N.G. Gresnigt, P.F. Renaud, P.H. Butler, Int. J. Mod. Phys. D 16, 1519 (2007) arXiv:hep-th/0611034

    Article  ADS  MathSciNet  Google Scholar 

  35. Robert J. Finkelstein, Int. J. Mod. Phys. A 20, 6487 (2005)

    Article  ADS  Google Scholar 

  36. Robert J. Finkelstein, Int. J. Mod. Phys. A 22, 4467 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  37. N.G. Gresnigt, A.B. Gillard, Electroweak symmetries from the topology of deformed spacetime with minimal length scale, arXiv:1512.04339 (2015)

  38. Daniel Sternheimer, “The important thing is not to stop questioning”, including the symmetries on which is based the standard model, in Geometric Methods in Physics (Springer, 2014) pp. 7--37

  39. Moshe Flato, Czech. J. Phys. 32, 472 (1982)

    Article  ADS  Google Scholar 

  40. Philippe Bonneau, Daniel Sternheimer, Topological Hopf algebras, quantum groups and deformation quantization, arXiv:math/0307277 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels G. Gresnigt.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gresnigt, N. Charge specific baryon mass relations with deformed SUq(3) flavor symmetry. Eur. Phys. J. A 52, 321 (2016). https://doi.org/10.1140/epja/i2016-16321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16321-9

Navigation