Skip to main content
Log in

Main restrictions in the synthesis of new superheavy elements: Quasifission and/or fusion fission

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The synthesis of superheavy elements stimulates the effort to study the peculiarities of the complete fusion with massive nuclei and to improve theoretical models in order to extract knowledge about reaction mechanism in heavy-ion collisions at low energies. We compare the theoretical results of the compound nucleus (CN) formation and evaporation residue (ER) cross sections obtained for the 48Ca + 248Cm and 58Fe + 232Th reactions leading to formation of CN with A = 296 and A = 290 of the superheavy element Lv (Z = 116 , respectively. The ER cross sections, which can be measured directly, are determined by the complete fusion and survival probabilities of the heated and rotating CN. Those probabilities cannot be measured unambiguously but the knowledge about them is important to study the formation mechanism of the observed products and to estimate the ER cross sections of the expected isotopes of elements. To this aim, the 48Ca + 249Cf and 64Ni + 232Th reactions are considered too. The use of the mass values of superheavy nuclei calculated in the framework of the macroscopic-microscopic model by the Warsaw group leads to smaller ER cross section for all of the reactions in comparison with the case of using the masses calculated by P. Möller et al..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Morita et al., J. Phys. Soc. Jpn. 81, 103201 (2012)

    Article  ADS  Google Scholar 

  2. Yu.Ts. Oganessian et al., Phys. Rev. C 70, 064609 (2004)

    Article  ADS  Google Scholar 

  3. Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006)

    Article  ADS  Google Scholar 

  4. L. Stavsetra et al., Phys. Rev. Lett. 103, 132502 (2009)

    Article  ADS  Google Scholar 

  5. J.M. Gates et al., Phys. Rev. C 83, 054618 (2011)

    Article  ADS  Google Scholar 

  6. S. Hofmann et al., Eur. Phys. J. A 48, 62 (2012)

    Article  ADS  Google Scholar 

  7. G. Giardina, S. Hofmann, A.I. Muminov, A.K. Nasirov, Eur. Phys. J. A 8, 205 (2000)

    Article  ADS  Google Scholar 

  8. G. Fazio et al., Mod. Phys. Lett. A 20, 391 (2005)

    Article  ADS  Google Scholar 

  9. V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, W. Scheid, Eur. Phys. J. A 45, 125 (2010)

    Article  ADS  Google Scholar 

  10. V.V. Sargsyan et al., Phys. J. A 47, 38 (2011)

    ADS  Google Scholar 

  11. V.V. Sargsyan et al., Phys. Rev. C 84, 064614 (2011)

    Article  ADS  Google Scholar 

  12. B.B. Back et al., Phys. Rev. C 32, 195 (1985)

    Article  ADS  Google Scholar 

  13. N.V. Antonenko et al., Phys. Rev. C 51, 2635 (1995)

    Article  ADS  Google Scholar 

  14. G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 68, 034601 (2003)

    Article  ADS  Google Scholar 

  15. G. Fazio et al., Eur. Phys. J. A 19, 89 (2004)

    Article  ADS  Google Scholar 

  16. A.K. Nasirov et al., Nucl. Phys. A 759, 342 (2005)

    Article  ADS  Google Scholar 

  17. N. Wang, E.G. Zhao, W. Scheid, Sh.G. Zhou, Phys. Rev. C 85, 041601(R) (2012)

    Article  ADS  Google Scholar 

  18. A.K. Nasirov et al., Phys. Rev. C 79, 024606 (2009)

    Article  ADS  Google Scholar 

  19. A.K. Nasirov et al., Int. J. Mod. Phys. E 18, 841 (2009)

    Article  ADS  Google Scholar 

  20. A.J. Sierk, Phys. Rev. C 33, 2039 (1986)

    Article  ADS  Google Scholar 

  21. V.F. Comas et al., Eur. Phys. J. A 48, 180 (2012)

    Article  ADS  Google Scholar 

  22. D.J. Hinde, M. Dasgupta, A. Mukherjee, Phys. Rev. Lett. 89, 282701 (2002)

    Article  ADS  Google Scholar 

  23. A. Sobiczewski, K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007)

    Article  ADS  Google Scholar 

  24. G. Mandaglio, G. Giardina, A.K. Nasirov, A. Sobiczewski, Phys. Rev. C 86, 064607 (2012)

    Article  ADS  Google Scholar 

  25. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 509 (1995)

    Article  Google Scholar 

  26. P. Möller, J.R. Nix, J. Phys. G: Nucl. Part. Phys. 20, 1681 (1994)

    Article  ADS  Google Scholar 

  27. I. Muntian, Z. Patyk, A. Sobiczewski, Phys. At. Nucl. 66, 1015 (2003)

    Article  Google Scholar 

  28. R. Bock et al., Nucl. Phys. A 388, 334 (1982)

    Article  ADS  Google Scholar 

  29. J. Tõke et al., Nucl. Phys. A 440, 327 (1985)

    Article  ADS  Google Scholar 

  30. D.J. Hinde et al., Phys. Rev. C 45, 1229 (1992)

    Article  ADS  Google Scholar 

  31. K. Siwek-Wilczynska, J. Wilczynski, R.H. Siemssen, H.W. Wilschut, Phys. Rev. C 51, 2054 (1995)

    Article  ADS  Google Scholar 

  32. B.B. Back et al., Phys. Rev. C 53, 1734 (1996)

    Article  ADS  Google Scholar 

  33. R.V. Jolos, A.I. Muminov, A.K. Nasirov, Yad. Fiz. 44, 357 (1986) Sov. J. Nucl. Phys. 44

    Google Scholar 

  34. G.G. Adamian, R.V. Jolos, A.K. Nasirov, Yad. Fiz. 55, 660 (1992) Sov. J. Nucl. Phys. 55

    Google Scholar 

  35. A.K. Nasirov et al., Eur. Phys. J. A 34, 325 (2007)

    Article  ADS  Google Scholar 

  36. A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998)

    Article  ADS  Google Scholar 

  37. P.J. Siemens, A.S. Jensen, Elements of Nuclei, Lecture Notes and Supplements in Physics (Addison-Wesley, Redwood City, California, 1987)

  38. H. Esbensen, Nucl. Phys. A 352, 147 (1981)

    Article  ADS  Google Scholar 

  39. A. Bohr, B. Mottelson, Nuclear structure, Vol. II (W.A. Benjamin, Massachusetts, 1975)

  40. S. Raman et al., At. Data Nucl. Data Tables 36, 1 (1987)

    Article  ADS  Google Scholar 

  41. R.H. Spear, At. Data Nucl. Data Tables 42, No. 1, 55 (1989)

    Article  ADS  Google Scholar 

  42. G. Giardina et al., J. Phys: Conf. Ser. 282, 012006 (2011)

    ADS  Google Scholar 

  43. M. Kowal, P. Jachimowicz, A. Sobiczewski, Phys. Rev. C 82, 014303 (2010)

    Article  ADS  Google Scholar 

  44. M. Kowal, A. Sobiczewski, Int. J. Mod. Phys. E 18, 914 (2009)

    Article  ADS  Google Scholar 

  45. G. Fazio et al., Phys. Rev. C 72, 064614 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  46. D.J. Hinde et al., Phys. Rev. Lett. 74, 1295 (1995)

    Article  ADS  Google Scholar 

  47. A. D’Arrigo, G. Giardina, M. Herman, A. Taccone, Phys. Rev. C 46, 1437 (1992)

    Article  ADS  Google Scholar 

  48. R.N. Sagaidak et al., J. Phys. G 24, 611 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Schwenk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasirov, A., Kim, K., Mandaglio, G. et al. Main restrictions in the synthesis of new superheavy elements: Quasifission and/or fusion fission. Eur. Phys. J. A 49, 147 (2013). https://doi.org/10.1140/epja/i2013-13147-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13147-y

Keywords

Navigation