Skip to main content
Log in

Nucleon-nucleon interactions via Lattice QCD: Methodology

HAL QCD approach to extract hadronic interactions in lattice QCD

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Fodor, C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012).

    Article  ADS  Google Scholar 

  2. M. Lüscher, Nucl. Phys. B 354, 531 (1991).

    Article  ADS  Google Scholar 

  3. K. Orginos, PoS LATTICE2011, 016 (2011).

    Google Scholar 

  4. N. Ishii, S. Aoki, T. Hatsuda, Phys. Rev. Lett. 99, 022001 (200).

    Google Scholar 

  5. S. Aoki, T. Hatsuda, N. Ishii, Comput. Sci. Dis. 1, 015009 (2008).

    Article  Google Scholar 

  6. S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys. 123, 89 (2010).

    Article  ADS  MATH  Google Scholar 

  7. H. Nemura, N. Ishii, S. Aoki, T. Hatsuda, Phys. Lett. B 673, 136 (2009).

    Article  ADS  Google Scholar 

  8. PACS-CS Collaboration (H. Nemura, N. Ishii, S. Aoki, T. Hatsuda), PoS LATTICE2008, 156 (2008).

    Google Scholar 

  9. HAL QCD Collaboration (T. Inoue et al.), Prog. Theor. Phys. 124, 591 (2010).

    Article  ADS  MATH  Google Scholar 

  10. HAL QCD Collaboration (T. Inoue et al.), Phys. Rev. Lett. 106, 162002 (2011).

    Article  ADS  Google Scholar 

  11. HAL QCD Collaboration (T. Inoue et al.), Nucl. Phys. A 881, 28 (2012).

    Article  ADS  Google Scholar 

  12. Y. Ikeda et al., PoS LATTICE2010, 143 (2010).

    Google Scholar 

  13. HAL QCD Collaboration (Y. Ikeda), PoS LATTICE 2011, 159 (2011) arXiv:1111.2663 [hep-lat].

    Google Scholar 

  14. T. Kawanai, S. Sasaki, Phys. Rev. D 82, 091501 (2010).

    Article  ADS  Google Scholar 

  15. for the HAL QCD Collaboration (T. Doi), PoS LATTICE2010, 136 (2010).

    Google Scholar 

  16. HAL QCD Collaboration (T. Doi et al.), Prog. Theor. Phys. 127, 723 (2012).

    Article  ADS  Google Scholar 

  17. for the HAL QCD Collaboration (S. Aoki), Prog. Part. Nucl. Phys. 66, 687 (2011).

    ADS  Google Scholar 

  18. HAL QCD Collaboration (S. Aoki et al.), Prog. Theor. Exp. Phys. 2012, 01A106 (2012).

    Article  Google Scholar 

  19. S. Weinberg, The Quantum Theory of Fields, Vol. I Foundations (Cambridge University Press, Cambridge, UK, 1999) p. 155, Chapt. 3.

  20. J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E. Seiler, P. Weisz, Nucl. Phys. B 618, 2001 (315).

  21. N. Ishizuka, PoS LAT2009, 119 (2009).

    Google Scholar 

  22. R. Tamagaki, W. Watari, Prog. Theor. Phys. Suppl. 39, 23 (1967).

    Article  ADS  Google Scholar 

  23. S. Okubo, R.E. Marshak, Ann. Phys. 4, 166 (1958).

    Article  ADS  MATH  Google Scholar 

  24. K. Nishijima, Phys. Rev. 111, 153 (1958).

    Article  MathSciNet  Google Scholar 

  25. W. Zimmermann, Nuovo Cimento 10, 597 (1958).

    Article  MATH  Google Scholar 

  26. R. Haag, Phys. Rev. 112, 669 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. G. Parisi, Phys. Rep. 103, 203 (1984).

    Article  ADS  Google Scholar 

  28. G.P. Lepage, in From Actions to Answers: Proceedings of the TASI 1989, edited by T. Degrand, D. Toussaint (World Scientific, Singapore, 1990).

  29. HAL QCD Collaboration (N. Ishii et al.), Phys. Lett. B 712, 437 (2012).

    Article  ADS  Google Scholar 

  30. Y. Kuramashi, Prog. Theor. Phys. Suppl. 122, 153 (1996).

    Article  ADS  Google Scholar 

  31. PACS-CS Collaboration (S. Aoki et al.), Phys. Rev. D 79, 034503 (2009).

    Article  ADS  Google Scholar 

  32. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Article  ADS  Google Scholar 

  33. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).

    Article  ADS  Google Scholar 

  34. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  35. Research Highlights 2007, in Nature, Vol. 450 (2007) p 1130.

  36. http://www.nn-online.org/.

  37. PACS-CS, HAL-QCD Collaborations (N. Ishii), PoS LAT2009, 019 (2009).

    Google Scholar 

  38. K. Murano, N. Ishii, S. Aoki, T. Hatsuda, Prog. Theor. Phys. 125, 1225 (2011).

    Article  ADS  MATH  Google Scholar 

  39. HAL QCD Collaboration (K. Murano), PoS LATTICE2011, 319 (2011).

    Google Scholar 

  40. R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977) 38.

    Article  MathSciNet  ADS  Google Scholar 

  41. for the HAL QCD Collaboration (N. Ishii), PoS LATTICE2010, 145 (2010).

    Google Scholar 

  42. HAL QCD Collaboration (S. Aoki et al.), Proc. Jpn. Acad. B 87, 509 (2011).

    Article  Google Scholar 

  43. HAL QCD Collaboration (K. Sasaki), PoS LATTICE2010, 157 (2010).

    Google Scholar 

  44. HAL QCD Collaboration (K. Sasaki), PoS LATTICE2011, 173 (2011).

    Google Scholar 

  45. S. Aoki, J. Balog, P. Weisz, PoS LATTICE 2009, 132 (2009).

    Google Scholar 

  46. S. Aoki, J. Balog, P. Weisz, JHEP 05, 008 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Aoki, J. Balog, P. Weisz, JHEP 09, 2010 (083).

  48. S. Aoki, J. Balog, P. Weisz, New J. Phys. 14, 043046 (2012).

    Article  ADS  Google Scholar 

  49. S. Aoki, J. Balog, P. Weisz, Prog. Theor. Phys. 128, 1269 (2012).

    Article  ADS  Google Scholar 

  50. S. Aoki, J. Balog, T. Doi, T. Inoue, P. Weisz, Int. J. Mod. Phys. E 22, 1330012 (2013).

    Article  ADS  Google Scholar 

  51. S. Aoki, B. Charron, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, Phys. Rev. D 87, 034512 (2013).

    Article  ADS  Google Scholar 

  52. C.J.D. Lin, G. Martinelli, C.T. Sachrajda, M. Testa, Nucl. Phys. B 619, 467 (2001).

    Article  ADS  Google Scholar 

  53. CP-PACS Collaboration (S. Aoki et al.), Phys. Rev. D 71, 094504 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinya Aoki.

Additional information

Communicated by H. Wittig

Contribution to the Topical Issue “Lattice Field Theory Methods in Hadron and Nuclear Physics” edited by Simon Hands and Hartmut Wittig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, S. Nucleon-nucleon interactions via Lattice QCD: Methodology. Eur. Phys. J. A 49, 81 (2013). https://doi.org/10.1140/epja/i2013-13081-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13081-0

Keywords

Navigation