Skip to main content
Log in

Nonequilibrium quantum meson gas: Dimensional reduction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A nonequilibrium quantum gas of interacting relativistic effective mesons, ressembling qualitatively those produced in a heavy-ion collision, is described by a scalar \( \phi^{{4}}_{}\) quantum field in (1 + 3) -dimensional Minkowski space. For high temperature and large temporal and spatial scales, we justify that classical statistical mechanics including quantum renormalization effects describe approximately the gas: nonequilibrium dimensional reduction (NEDR). As a source of hints, we treat the gas at equilibrium in real-time formalism and obtain simplifications for high temperature and large spatial scales, thereby extending a useful equilibrium dimensional reduction known for the imaginary-time formalism. By assumption, the nonequilibrium initial state of the gas, not far from thermal equilibrium, includes interactions and inhomogeneities. We use nonequilibrium real-time generating functionals and correlators at nonzero temperature. In the NEDR regime, our arguments yield: 1) renormalized correlators simplify, 2) the perturbative series for those simplified correlators can be resummed into a new nonequilibrium generating functional, Z’ r, dr , which is super-renormalizable and includes renormalization effects (large position-dependent thermal self-energies and effective couplings). Z’ r, dr could enable to study nonperturbatively changes in the phase structures of the field, by proceeding from the nonequilibrium quantum regime to the NEDR one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Heinz, Concepts in heavy-ion physics, arXiv:hep-ph/0407360, v1 30 July (2004).

  2. M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996).

  3. J.I. Kapusta, C. Gale, Finite Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, 2006).

  4. R.J. Rivers, Path Integral Methods in Quantum Field Theory (Cambridge University Press, Cambridge, 1987).

  5. A. Das, Finite Temperature Field Theory (World Scientific, Singapore, 1999).

  6. D. Gross, R. Pisarski, L. Yaffe, Rev. Mod. Phys. 53, 43 (1981).

    Google Scholar 

  7. P. Ginsparg, Nucl. Phys. B 170, 388 (1980).

    Google Scholar 

  8. T. Appelquist, R. Pisarski, Phys. Rev. D 23, 2305 (1981).

    Google Scholar 

  9. R.F. Alvarez-Estrada, Phys. Rev. D 36, 2411 (1987).

    Google Scholar 

  10. E. Braaten, A. Nieto, Phys. Rev. D 51, 6990 (1995).

    Google Scholar 

  11. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, fourth edition (Clarendon Press, Oxford, 2002).

  12. H. Meyer Ortmanns, T. Reisz, Principles of Phase Structures in Particle Physics (World Scientific, Singapore, 2007).

  13. G. Aarts, J. Smit, Nucl. Phys. B 511, 451 (1998).

    Google Scholar 

  14. C. De Tar, Phys. Rev. D 32, 276 (1985).

    Google Scholar 

  15. A. Hart, M. Laine, O. Philipsen, Nucl. Phys. B 586, 443 (2000).

    Google Scholar 

  16. A. Hart, O. Philipsen, Nucl. Phys. B 572, 243 (2000).

    Google Scholar 

  17. R.V. Gavai, S. Gupta, Phys. Rev. Lett. 85, 2068 (2000).

  18. H. Kleinert, V. Schulte-Frohlinde, Critical Properties of $\phi^{4}$-Theories (World Scientific, Singapore, 2001).

  19. D.J. Amit, V. Martin-Mayor, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 2005).

  20. C. Bryges, J. Frohlich, A.D. Sokal, Commun. Math. Phys. 91, 141 (1983).

    Google Scholar 

  21. L. von Lohneysen, R.E. Shrock, I.O. Stamatescu, Phys. Lett. B 205, 321 (1988).

    Google Scholar 

  22. D. O’Connor, C.R. Stephens, Nucl. Phys. B 360, 297 (1991)

    Google Scholar 

  23. S.-B. Liao, M. Strickland, Nucl. Phys. B 497, 611 (1997).

    Google Scholar 

  24. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (College Press, University of Beijing, 1998).

  25. M. Le Bellac, Quantum and Statistical Field Theory (Oxford University Press, Oxford, 1991).

  26. N.P. Landsman, Ch.G. van Weert, Phys. Rep. 145, 141 (1987).

    Google Scholar 

  27. H. Matsumoto, I. Ojima, H. Umezawa, Ann. Phys. (N.Y.) 152, 348 (1984).

    Google Scholar 

  28. A.J. Niemi, G.W. Semenoff, Nucl. Phys. B 230, 181 (1984)

    Google Scholar 

  29. T.S. Evans (A New Time Contour for Thermal Field Theories), A.C. Pearson (Why the Real Time Formalism Doesn’t Factorize), Ch.G. van Weert (Aspects of Thermal Field Theory), in Banff/Cap Workshop on Thermal Field Theory, edited by F.C. Khanna, R. Kobes, G. Kunstatter, H. Umezawa (World Scientific, Singapore, 1994).

  30. A. Niegawa, Phys. Rev. D 40, 1989 (1989).

  31. R.J. Furnstahl, B.D. Serot, Ann. Phys. (N.Y.) 185, 138 (1988)

    Google Scholar 

  32. T.S. Evans, Nucl. Phys. B 374, 340 (1992).

    Google Scholar 

  33. R. Kobes, G.W. Semenoff, Nucl. Phys. B 260, 714 (1985)

    Google Scholar 

  34. R. Kobes, Phys. Rev. D 42, 562 (1990)

    Google Scholar 

  35. K.-c. Chou, Z.-b. Su, B.-l. Hao, L. Yu, Phys. Rep. 118, 1 (1985).

    Google Scholar 

  36. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, 2nd edition (World Scientific, Singapore, 1995).

  37. N.P. Landsman, Report IFTA-85-08 (1985) (unpublished) 145, 141 (1987).

  38. J.S. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 37, 452 (1951)

    Google Scholar 

  39. J. Berges, Introduction to Nonequilibrium Quantum Field Theory, arXiv:hep-ph/0409233, v1 20 Sep. (2004).

  40. E. Calzetta, B.L. Hu, Phys. Rev. D 37, 2878 (1988).

    Google Scholar 

  41. I.D. Lawrie, J. Phys. A: Math. Gen. 25, 6493 (1992).

    Google Scholar 

  42. F. Cooper, S. Habib, Y. Kluger, E. Mottola, Phys. Rev. D 55, 6471 (1997)

    Google Scholar 

  43. D. Boyanovsky, H.J. de Vega, R. Holman, J.F. Salgado, Phys. Rev. D 54, 7570 (1996).

    Google Scholar 

  44. I. Dadic, Phys. Rev. D 63, 025011 (2001).

    Google Scholar 

  45. J. Berges, S. Borsanyi, Eur. Phys. J. A 29, 95 (2006).

    Google Scholar 

  46. A. Arrizabalaga, Eur. Phys. J. A 29, 101 (2006).

    Google Scholar 

  47. E.S. Fraga, Eur. Phys. J. A 29, 123 (2006).

    Google Scholar 

  48. U. Reinosa, Eur. Phys. J. A 29, 129 (2006).

    Google Scholar 

  49. P. Danielewicz, Ann. Phys. (N.Y.) 152, 239 (1984).

    Google Scholar 

  50. D. Zubarev, V. Morozov, G. Ropke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1 (Akademie Verlag, Berlin, 1996).

  51. J. Baacke, K. Heitmann, C. Patzold, Phys. Rev. D 58, 125013 (1998).

    Google Scholar 

  52. P. Jizba, Equilibrium and Non-Equilibrium Quantum Field Theory, PhD Thesis, University of Cambridge, U.K. (1999).

  53. C. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer, Berlin, 1998).

  54. U. Eckern, G. Schon, V. Ambegaokar, Phys. Rev. B 30, 6419 (1984).

    Google Scholar 

  55. N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Interscience Publishers Inc., New York, 1959)

  56. A. Arrizabalaga, U. Reinosa, Eur. Phys. J. A 31, 754 (2007).

    Google Scholar 

  57. R.F. Alvarez-Estrada, Eur. Phys. J. A 31, 761 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Alvarez-Estrada.

Additional information

T.S. Bíró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Estrada, R.F. Nonequilibrium quantum meson gas: Dimensional reduction. Eur. Phys. J. A 41, 53–70 (2009). https://doi.org/10.1140/epja/i2009-10785-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2009-10785-6

PACS

Navigation