Skip to main content
Log in

Weak-interaction-mediated rates on iron isotopes for presupernova evolution of massive stars

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

During the presupernova evolution of massive stars, the isotopes of iron, 54, 55, 56Fe , are advocated to play a key role inside the cores primarily decreasing the electron-to-baryon ratio (Ye) mainly via electron capture processes thereby reducing the pressure support. Electron decay and positron capture on 55Fe , on the other hand, also have a consequential role in increasing the lepton ratio during the silicon burning phases of massive stars. The neutrinos and antineutrinos produced, as a result of these weak-interaction reactions, are transparent to the stellar matter and assist in cooling the core thereby reducing the entropy. The structure of the presupernova star is altered both by the changes in Ye and the entropy of the core material. The aim of this paper is to report the improved microscopic calculation of Gamow-Teller (GT±) strength distributions of these key isotopes of iron using the pn-QRPA theory. The main improvement comes from the incorporation of experimental deformation values for these nuclei. Additionally six different weak-interaction rates, namely electron and positron capture, electron and positron decay, and, neutrino and antineutrino cooling rates, were also calculated in presupernova matter. The calculated electron capture and neutrino cooling rates due to isotopes of iron are in good agreement with the large-scale shell model (LSSM) results. The calculated beta decay rates, however, are suppressed by three to five orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Bethe, G.E. Brown, J. Applegate, J.M. Lattimer, Nucl. Phys. A 324, 487 (1979).

    Google Scholar 

  2. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980)

    Google Scholar 

  3. M.B. Aufderheide, I. Fushiki, S.E. Woosley, E. Stanford, D.H. Hartmann, Astrophys. J. Suppl. Ser. 91, 389 (1994).

    Google Scholar 

  4. T. Rönnqvist, H. Condé, N. Olsson, E. Ramström, R. Zorro, J. Blomgren, A. Håkansson, A. Ringbom, G. Tibell, O. Jonsson, L. Nilsson, P.-U. Renberg, S.Y. van der Werf, W. Unkelbach, F.P. Brady, Nucl. Phys. A 563, 225 (1993).

    Google Scholar 

  5. S. El-Kateb, K.P. Jackson, W.P. Alford, R. Abegg, R.E. Azuma, B.A. Brown, A. Celler, D. Frekers, O. Häusser, R. Helmer, R.S. Henderson, K.H. Hicks, R. Jeppesen, J.D. King, K. Raywood, G.G. Shute, B.M. Spicer, A. Trudel, M. Vetterli, S. Yen, Phys. Rev. C 49, 3128 (1994).

    Google Scholar 

  6. B.D. Anderson, C. Lebo, A.R. Baldwin, T. Chittrakarn, R. Madey, J.W. Watson, Phys. Rev. C 41, 1474 (1990).

    Google Scholar 

  7. J. Rapaport, T. Taddeucci, T.P. Welch, C. Gaarde, J. Larsen, D.J. Horen, E. Sugarbaker, P. Koncz, C.C. Foster, C.D. Goodman, C.A. Goulding, T. Masterson, Nucl. Phys. A 410, 371 (1983).

    Google Scholar 

  8. K. Langanke, G. Martínez-Pinedo, Nucl. Phys. A 673, 481 (2000).

    Google Scholar 

  9. J.-Un Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 71, 149 (1999).

    Google Scholar 

  10. J.-Un Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 88, 237 (2004).

    Google Scholar 

  11. J.-Un Nabi, M.-Ur. Rahman, Phys. Rev. C 75, 035803 (2007).

    Google Scholar 

  12. J.-Un Nabi, M. Sajjad, Phys. Rev. C 76, 055803 (2007).

    Google Scholar 

  13. J.-Un Nabi, Phys. Rev. C 78, 045801 (2008).

    Google Scholar 

  14. J.-Un Nabi, M. Sajjad, Phys. Rev. C 77, 055802 (2008).

    Google Scholar 

  15. A. Heger, S.E. Woosley, G. Martínez-Pinedo, K. Langanke, Astrophys. J. 560, 307 (2001).

    Google Scholar 

  16. I. Stetcu, C.W. Johnson, Phys. Rev. C 69, 024311 (2004).

    Google Scholar 

  17. S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor jr., P.H. Stelson, At. Data Nucl. Data Tables 36, 1 (1987).

  18. P. Möller, J.R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).

  19. M.B. Aufderheide, S.D. Bloom, G.J. Mathews, D.A. Resler, Phys. Rev. C 53, 3139 (1996).

    Google Scholar 

  20. C. Gaarde, Nucl. Phys. A 396, 127c (1983).

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. Wambach

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabi, J.U. Weak-interaction-mediated rates on iron isotopes for presupernova evolution of massive stars. Eur. Phys. J. A 40, 223–230 (2009). https://doi.org/10.1140/epja/i2008-10747-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10747-6

PACS

Navigation